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ABSTRACT

Causality analysis has been a topic of research from the days of Aristotle. However, there has not

been an universal definition of causality, with different researchers providing different definitions and

measures of causality. In this work, we provide a new definition of causality in a dynamical system

setting. In particular, we quantify how a state (or subspace) of a dynamical system influence any other

state (or subspace). The quantification is in terms of what we call information transfer. Intuitively,

information transfer quantifies how the entropy of a state (say y) changes due to evolution of any

other state (say x) and this characterizes the causal structure and influence in a dynamical system.

We show that the information transfer measure satisfies intuitions of causality and influence. In par-

ticular, we show our information transfer measure satisfy (a) zero influence, (b) transfer asymmetry

and (c) information conservation. The one step information transfer is generalized to define n-step

information transfer and this enables us to clearly distinguish between direct and indirect influence.

With this, we show how in a dynamical system setting, when previous measures of causality fail to

capture the true causal structure, our information transfer measure do capture the true causal structure

in a dynamical system. Apart from identification of causal structure, we use the information transfer

measure to characterize influence and demonstrate how this can be used to characterize stability in a

power network. In particular, we show how to identify the states and generators which are responsible

for instability of a power network. Moreover, we show how the connection between stability and

information transfer can be used to predict phase transitions in complex systems. We also provide

two algorithms to compute information transfer from time series data and show how this can be used

for topology identification of linear networks and stability analysis of power networks. Finally, as a

separate application, we characterize influence in a stock market and also show how the information

transfer measure can be used to predict stock market crashes.
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CHAPTER 1. INTRODUCTION

Causality and influence characterization is a problem of utmost importance and finds its relevance

in many different applications like world wide web and social media, biological networks, neural sci-

ence, economics, finance etc. Usually, concepts of information theory are used in such applications

and a study of the information flow between the components of the network throws light on causality

and the influential nodes of the network. In (1) the authors use information based metric to character-

ize the most influential nodes in social networks. In neuroscience, concepts of information theory are

used to understand how information flow in different parts of the brain (2) and identifying influence

in gene regulatory networks (3; 4) .

Again, Clive Granger, in 1969 (5), provided his own definition of causality to study causality in

economic models. This definition of causality, which is now known as Granger causality, is used in

economic and financial networks to infer causal interactions from the time series data (6; 7; 8).

Causality detection in system theoretic setting was addressed much later in 2000, when Thomas

Schreiber (9) defined transfer entropy between two states in a dynamical system. In 2005, Liang

and Kleeman defined information transfer between dynamical system components (10) and provided

explicit expressions for the information transfer between the states in a continuous time dynamical

system.

1.1 Previous Work

Causality is the agency or efficacy that connects one process (the cause) with another (the effect),

where the first is understood to be partly responsible for the second, and the second is dependent on

the first. In general, a process has many causes, which are said to be causal factors for it, and all lie in

its past. An effect can, in turn, be a cause of many other effects, which all lie in its future. Interpreting
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causation as a deterministic relation means that if A causes B, then A must always be followed by

B. In this sense, war does not cause deaths, nor does smoking cause cancer or emphysema. As

a result, a probabilistic notion of causation is often used. Informally, A (“The person is a smoker”)

probabilistically causesB (“The person has now or will have cancer at some time in the future”), if the

information that A occurred increases the likelihood of B’s occurrence. This has led the philosophers

and researchers to define causality in a probabilistic setting.

However, there has been no universally accepted definition of causality. One of the most com-

monly used notions of causality is Granger causality and was proposed by Clive Granger for studying

causality in the economics framework and is normally tested in context of linear regression models.

For example, consider a bivariate linear autoregressive model of two variables x1 and x2

x1(t) =

p∑
j=1

A11,jx1(t− j) +

p∑
j=1

A12,jx2(t− j) + E1(t)

x2(t) =

p∑
j=1

A21,jx1(t− j) +

p∑
j=1

A22,jx2(t− j) + E1(t)

where p is the maximum number of lagged observations included in the model (the model order),

the matrix A contains the coefficients of the model and E1(t) and E2(t) are the prediction errors for

each time series. If the variance of E1(or E2) is reduced by the inclusion of x2(or x1) in the first

(or second) equation, then it is said that x2(or x1) Granger causes x1(or x2). The usefulness of the

Granger causality lies in the fact that it is easy to use and hence since its development has been used

in many different applications (7).

On the other hand, Shannon had defined the entropy of a random variable and developed the field

of information theory. However, the information theory, as developed by Shannon, was symmetric and

hence one cannot use it directly to infer causality. The concept of mutual information between two

random variable x and y gives the information shared by x and y, but it does not give the direction

of flow of information. In order to incorporate the directional sense in information theory, Marko

developed what is now known as bi-directional information. It is a natural extension of the concept of

mutual information between two random variables and furthermore, it also incorporates the sense of

direction. Thus came the idea that elements of information theory can be used to infer the direction

of information flow and hence causality. The major breakthrough, however, was achieved by Massey
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(11) and later by Kramer (12) who generalized the concept of bi-directional information and defined

what is known as directed information.

Let Xn = {X1, X2, · · · , Xn} and Y n = {Y1, Y2, · · · , Yn} be two stochastic processes, viewed

as a sequence of random variables. Then the entropy (H) of the random variable X is defined as

H(Xn) = −
∫

ΩX

ρ(Xn) log ρ(Xn)dXn (1.1)

where ΩX is the event space of X and ρ(Xn) is the probability distribution of Xn. Massey and

Kramer (12) defined the directed information from Xn to Y n as

I(Xn → Y n) = H(Y n)−H(Y n ‖ Xn) (1.2)

where H(Y n) is the entropy of the sequence Y n and

H(Y n ‖ Xn) :=

n∑
i=1

H(Yi|Y i−1, Xi) (1.3)

is the entropy of Y n causally conditioned on Xn. The idea of causal conditioning takes into account

the direction of information flow and hence throws light on the causal structure of the stochastic

process.

The concept of directed information is more suited to stochastic processes and in 2000, Thomas

Schreiber proposed the idea of transfer entropy (9) which is geared to study the information flow in

systems evolving in time. Transfer entropy is a difference of two conditional entropies and for Markov

chains of order one, it is equal to conditional mutual information. The concept of transfer entropy is

discussed in chapter 2.

However, though transfer entropy was geared more from system theoretic point of view, it fails

to capture the zero influence in some cases (13). Liang and Kleeman (10) came up with a new

formulation of information transfer in dynamical systems and showed that it captures the notion of

zero transfer. To define the Liang-Kleeman information flow from state x to state y, they considered

two different systems, namely, the original system and a modified system, where they froze x and

propagated the modified system by one-time step to determine the amount of information flow from

x to y. The Liang-Kleeman information flow is also explained in detail in chapter 2.

In (10), the authors had defined Liang-Kleeman information transfer in a two state system. In

(14), their definition of information transfer was generalised to define information transfer between
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subspaces of dynamical systems with additive noise. Liang and Kleeman carried their research for-

ward and studied the information transfer in general n-dimensional continuous time and discrete time

dynamical systems (15; 16; 17). They also studied the information transfer in two dimensional dis-

crete time stochastic systems with additive noise (18). In (10), they also show that their formalism of

information transfer is qualitatively consistent with the notions of transfer entropy and Granger causal-

ity. So Liang-Kleeman information transfer is also used to study the causal structure in a dynamical

system. But the Liang-Kleeman information transfer cannot account for indirect transfer (17). Again,

transfer entropy, though gives a measure of identifying the direction of information flow, and hence

influence, it also suffers from some drawbacks. For example, it may not identify indirect influence

and also may give erroneous results in presence of dominant neighbours (13). Directed information,

as formulated by Massey and Kramer also suffers from similar deficiencies.

On the other hand, various researchers have tried to connect information theory and control theory.

In (19), the authors have studied the classical concepts of controllability and observability from the

information theoretic view point. Again, in (20), the authors have shown that the mutual information

between the state and the estimate is a maximum in a discrete time Kalman filter. Moreover, in (21),

the authors have studied the information flow in a Kalman-Bucy filter.

The main motivation for our work was to come up with a measure of causality which can identify

the indirect links and also should be able to correctly infer about the zero influence. Moreover, it

would also be nice if the measure of information transfer, so defined to capture the influence structure

between the states in a dynamical system, can be extended to define information transfer between the

various signals involved in a control system. In that case, it may be possible to connect the information

transfer measure with some classic control theoretic notions. In that case, one may be able to connect

the two fields of information theory and control theory and study them on a common base.

1.2 Our Contribution

Formalism for information transfer developed in this work is in dynamical systems setting and

is closely related to and inspired from information transfer framework developed in (14; 10; 17) for

nonlinear dynamical systems. We used the ideas of Liang-Kleeman transfer to propose an axiomatic
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definition of information transfer in discrete linear dynamic network (22). The axioms were physically

motivated and it was shown in (22) that there exists a unique expression for information transfer in a

dynamic network satisfying these axioms. In this work, we use the ideas of directed information and

transfer entropy and the intuitions of (10; 22) to define the information transfer.

In particular, instead of absolute entropy, we use the conditional entropy to define the information

transfer. This definition is a natural extension of directed information and transfer entropy and we

show that the new definition of information transfer satisfies the intuitions of information transfer,

namely a) Zero transfer, b) Transfer asymmetry and c) Information conservation. The advantage of

using conditional entropy to define information transfer lies in the fact that this new definition of one

step information transfer can be naturally extended to define n-step transfer and average information

transfer, which can be related to entropy rate of a variable and we find that the extension of the one

step information transfer definition to n-step information transfer definition is the precise concept

needed to capture indirect influence. This is one of the important consequence of our definition of

information transfer. The n-step information transfer is not only a natural generalization of the one

step information transfer, but the n-step information transfer serves as a natural measure of causality

and we show, via examples, that in dynamic networks, where directed information (and transfer en-

tropy) may give erroneous counter-intuitive results, as far as the causality structure is concerned, our

definition of causality does in fact capture the true causal structure of the network.

The information transfer defined here-in is not a stand-alone concept and can be related to already

existing concepts in control theory. In particular, a generalized definition of information transfer is

provided to define information transfer between the various signals involved in a control dynamical

system. With this generalized definition, we show that in a linear feedback control system, our infor-

mation transfer is related to the Bode integral of the sensitivity transfer function from the output to

the input. This result also establishes a connection between the average directed information and our

information transfer.

Moreover, directed information and transfer entropy do not have any relation with the very basic

and important control theoretic concepts like controllability and observability. In fact, they are also

not related to the weaker notions of structural controllability and structural observability. This is
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another serious drawback of using directed information and transfer entropy in a control theoretic

setting. However, we show that our definition of information transfer can be connected to structural

controllability and structural observability. In particular, we show that if the information transfer

from the input to all the states is non-zero over any finite time step, then the system is structurally

controllable. The result for structural observability is similar, where one has to look at the information

transfer from the states to the output.

We also use the information transfer to define influence in a dynamic network. This is one of

the more important applications of the proposed framework because defining influence and finding

the influential nodes in a dynamic network has been and still is a problem of utmost importance in

social media analysis, gene regulatory networks, neuroscience etc. We study two different real-life

networks, where we use the proposed definition of information transfer to characterize influence.

Further, we characterize stability in a dynamical system and identify the state (subspace) which are

responsible for instability of the system. This has applications in power networks, where one can use

the information transfer measure to classify voltage and angle instability. We demonstrate this on three

different power networks, namely IEEE 3 bus system, IEEE 9 bus system and IEEE 39 bus system.

The stability analysis of power systems from information transfer viewpoint served as a motivation

for studying phase transitions in complex systems and we show that information transfer can predict

phase transition in complex systems as well.

We also provide algorithms to compute information transfer from time series data. We provide

a general algorithm for general non-linear maps and also provide a different algorithm, based on

ideas from robust optimization, for information transfer computation from data coming from linear

systems. We show how the algorithms can be used for topology identification of linear networks and

also, as another application we analyze stock market and characterize influence in the same, using

stock market data.

1.3 Organization of the Report

The report is organized as follows. In chapter 2, we develop the basic concepts and definitions

needed to define the information transfer in a discrete time dynamical system. In chapter 3, we define
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the notion of information transfer and prove the properties that it satisfies. We also define the n-step

transfer in this section and analyze some of its properties. We further provide a set-oriented method

for finding the information transfer. Chapter 4 is dedicated to finding the information transfer in linear

dynamical control systems. Chapter 5 is dedicated to discussing how our definition of information

transfer gives the correct causal structure in a dynamical system. In chapter 6, we discuss some

basic examples where we use the information transfer to characterize influence. In chapter 7, we

use information transfer to characterize influence and stability in power systems and in chapter 8 we

use these intuitions to analyze phase transitions using information transfer measure. In chapter 9, we

discuss two algorithms for computing information transfer from time series data and in chapter 10,

we analyze the causal structure of US stock market using stock price data. Finally, we conclude the

report in chapter 11.
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CHAPTER 2. PRELIMINARIES FOR INFORMATION TRANSFER

FORMULATION

In this chapter, we review the basics of information theory and the existing notions of information

flow. Throughout this work, by information of a random variable, we will mean the Shannon entropy

of the random variable. So, if X is a random variable, with probability distribution ρ(x), defined over

the event space Ω, then the entropy of X is given by

H(X) = −
∫

Ω
ρ(x) log ρ(x)dx (2.1)

This notion of entropy of a random variable was defined by Shannon (23) and physically it captures

the uncertainty of the random variable X . This is also known as the information contained in the

random variable X . In our formulation of information transfer, we study how this information is

flowing between the states of a dynamical system. So the fundamental problem is to study how the

probability density functions evolve under the system dynamics. We consider the following dynamical

system (2.2) and address the problem of information transfer between the states of the system.

z(t+ 1) = f(z(t)) + ξ(t) (2.2)

where z(t) ∈ RN , ξ(t) ∈ RN is assumed to vector-valued random variable and ξ(0), ξ(1), . . . are

independent random vectors each having the same density g. The mapping f : RN → RN is assumed

to be at least continuous. Let z = (z1, . . . , zN )> ∈ RN . We are interested in finding the information

transfer from state zi to state zj , as the system evolves from time step t to time step t + 1. We

denote this transfer by the notation [Tzi→zj ]
t+1
t . More generally, we are also interested in deriving the

information transfer between the subspaces of the dynamical system.

Let ρ(z, t) be probability density function at time t. The propagation of probability density func-

tion under system dynamics (2.2) is described by the linear Perron-Frobenius operator P : L1 → L1
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(24).

2.1 Perron-Frobenius Operator

Consider a discrete-time process defined by

x(n+ 1) = f(x(n)) + ξ(n)

where f : Rd → Rd is a measurable, not necessarily nonsingular, transformation and ξ(0), ξ(1), · · ·

are independent random vectors each having the same density g. Let the density of x(n) be denoted

by ρn. Let h : Rd → R be an arbitrary, bounded, measurable function. The expectation of h(x(n+1))

is

E(h(x(n+ 1))) =

∫
Rd

h(x)ρn+1(x)dx

Because of the fact that the joint density of (x(n), ξ(n)) is just ρng, we have

E(h(x(n+ 1))) = E[h (f(x(n) + ξ(n)))]

=

∫
Rd

∫
Rd

h(f(y) + z)ρn(y)g(z)dydz

By a change of variables,

E(h(x(n+ 1))) =

∫
Rd

∫
Rd

h(x)ρn(y)g(x− f(y))dxdy

Using the fact that h was an arbitrary, bounded, measurable function, we have

ρn+1 =

∫
Rd

ρn(y)g(x− f(y))dy (2.3)

From the above equation, we define an operator P : L1 → L1 by

Pρ(x) =

∫
Rd

ρ(y)g(x− f(y))dy (2.4)

This operator P is a Markov operator and dictates the evolution of the density and is the Perron-

Frobenius operator for the system defined by (2.2). Hence, under the system dynamics (2.2), the

evolution of the density function ρ(z(t)) is given by

ρt+1(z) = [Pρt](z) =

∫
RN

ρt(z̃)g(z − f(z̃))dz̃ (2.5)
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Remark 1. For convenience of notation, we will denote the density ρt(z) by ρ(z(t)). Also at places

we will use ′ notation to denote t+ 1 time instant of state variable i.e., z
′

:= z(t+ 1) and z(t) := z.

2.2 Directed Information, Transfer Entropy and Liang-Kleeman Information

Transfer

Shannon’s information theory is symmetric and hence does not capture the causal structure in mul-

tivariate time series or in a dynamical system. To incorporate the sense of direction, Marko proposed,

what is known today as bi-directional information (25). Massey and Kramer (11; 12) generalized

the concept of bi-directional information and defined directed information between two sequences of

random variables and thus incorporated the sense of direction in Shannon’s information theory.

2.2.1 Directed Information

Let Xn = {X1, X2, · · · , Xn} and Y n = {Y1, Y2, · · · , Yn} be two stochastic processes, viewed

as a sequence of random variables. Then the entropy (H) of the random variable X is defined as

H(Xn) = −
∫

ΩX

ρ(Xn) log ρ(Xn)dXn (2.6)

where ΩX is the event space of X and ρ(Xn) is the probability distribution of Xn. Given the distri-

butions ρ(Xn) and ρ(Y n), the mutual information between X and Y is defined as

I(Xn;Y n) =

∫
ΩX×ΩY

ρ(XnY n) log
ρ(XnY n)

ρ(Xn)ρ(Y n)

= H(Y n)−H(Y n|Xn) (2.7)

where H(Y n|Xn) is the conditional entropy of Y n, conditioned on Xn, such that

ρ(Y n|Xn) =

n∏
i=1

ρ(Yi|Y i−1, Xn) (2.8)

Note that each term of the product on the right hand side of equation (2.8) depends on the entire entire

sequence of X . Massey and Kramer (12) defined the directed information from Xn to Y n as

I(Xn → Y n) = H(Y n)−H(Y n ‖ Xn) (2.9)
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where H(Y n) is the entropy of the sequence Y n and

H(Y n ‖ Xn) :=

n∑
i=1

H(Yi|Y i−1, Xi) (2.10)

is the entropy of Y n causally conditioned on Xn. This differs from

H(yN |xN ) =

N∑
n=1

H(yn|yn−1xN )

in the fact that xn is replaced by xN .

Directed information is not symmetric in X and Y and thus depicts the direction of information

flow between the stochastic processes. This observation led to the use of directed information to infer

about the causal structure in a multivariate stochastic process.

2.2.2 Transfer Entropy

In system theoretic perspective, Thomas Schreiber (26) came up with an information theoretic

measure, called transfer entropy, to distinguish driving and responding elements in a dynamical sys-

tem and also to detect asymmetry in the interaction of the subsystems. The transfer entropy is defined

as follows.

Definition 2 (Transfer Entropy). : Let ρ(·) denote the probability density of the appropriate random

variable, then in the case of Markov chain of order one, the transfer entropy from zi to zj , at time step

t, is

TSzi→zj =
∑

ρ(zt+1
j , ztj , z

t
i) log

ρ(zt+1
j |ztj , zti)

ρ(zt+1
j |ztj)

(2.11)

The transfer entropy is a difference of two conditional entropies and its non-symmetric nature

captures the direction of information flow in a dynamical system. we note that for Markov chain of

order one, transfer entropy is the conditional mutual information between zt+1
j and ztj , given zti . For

the special case of vector auto-regressive processes, transfer entropy can be shown to be equivalent

to Granger causality (27) and hence, when Granger causality analysis is difficult to carry out, often

transfer entropy is used to infer about the causal structure.
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2.2.3 Liang-Kleeman Information Transfer

Both directed information and transfer entropy were motivated from the mutual information and

in both the cases the definition of mutual information was modified to incorporate a sense of direction.

Liang and Kleeman (10) introduced a new way of defining information transfer in a dynamical system.

The intuition they had is that the information transfer from a state zi to zj is the difference of the

entropy of zj when zi is present in the dynamics and when zi is absent from the dynamics. So, in

order to find the Liang-Kleeman information flow from zi to zj , as the system (2.2) evolves from time

step t to time step t+ 1, one has to compute the entropy of two different systems, one of them being

the original system and the other one being a modified system, where zi is held frozen from time step

t to time step t+ 1. We briefly describe this procedure for a two dimensional system.

Let

z1(t+ 1) = f1(z1(t), z2(t))

z2(t+ 1) = f2(z1(t), z2(t))

(2.12)

be a two dimensional discrete time system. Then the Liang-Kleeman information transfer from the

state z1 to z2, as the system evolves from time step t to time step t+ 1 is

TLKz1→z2 = H(z2(t+ 1))−H 6z1(z2(t+ 1)) (2.13)

where H6z1(z2(t + 1)) is the entropy of z2 at time step t + 1, where z1 has been held frozen. That is,

to calculate H6z1(z2(t+ 1)), one has to consider the reduced system

z2(t+ 1) = f2(z1(t), z2(t)) + ξ2(t) (2.14)

where z1(t) is treated as a parameter.

Liang-Kleeman information transfer definition is intuitive and captures the important notion of

zero transfer, that is, when zi does not appear in the dynamics of zj , then the information transfer

from zi to zj is zero. However, one serious drawback of Liang-Klemman information transfer is that,

like directed information and transfer entropy, it can not capture the indirect transfer. By this, we

mean that it may happen that in a dynamical system, zi does not affect the dynamics of zk directly, but

does so via zj . That is, zi affects the dynamics of zj which in turn affects zk. So indirectly, zi affects
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zk and so there should be a non-zero information flow from zi to zk. This indirect transfer is not

captured by the Liang-Kleeman information flow. Directed information and transfer entropy, in this

case, will give a non-zero transfer, but it fails to identify whether the transfer was direct or via some

other state. Moreover, there are some other issues with directed information and transfer entropy, as

far as the causal structure is concerned. We will discuss them in details in chapter 5.

With this, now we are in a position to introduce our notion of information transfer.
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CHAPTER 3. INFORMATION TRANSFER

In this chapter, we provide the definition of information transfer in a dynamical system and discuss

its basic properties. We first define the one step information transfer and discuss it in details and then

we will generalize the definition of one step information transfer to define information transfer over

n-steps.

3.1 One Step Information Transfer

To derive the expression for information transfer from state zi to zj of the system given by (2.2),

we first split the state z ∈ RN into two subspace. In particular, z = (x>, y>)>, where x ∈ R|x| and

y ∈ R|y| with |x| denotes the cardinality of space x and hence |x| + |y| = N . We first present an

expression for information transfer for the two subspace case i.e., Tx→y. Towards this goal we write

the system dynamics in terms of x and y subspace as follows:

z(t+ 1) =

x(t+ 1)

y(t+ 1)

 =

fx(x, y)

fy(x, y)

+

ξx(t)

ξy(t)


:= f(x(t), y(t)) + ξ(t) (3.1)

We later show how the expression for information transfer between two subspace generalizes

to systems with more than two subspace. There are existing concepts, like directed information

(11), transfer entropy (26) and Liang-Kleeman information (10), which study the flow of informa-

tion in a dynamical system. However, these concepts do not capture all the intuitions for information

transfer. For example, while all the above three concepts satisfy the information transfer asymmetry

property, only Liang-Kleeman information transfer satisfies the zero transfer property. However, the

Liang-Kleeman information does not satisfy the information conservation property. We show that our
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proposed definition of information transfer satisfies all the three properties of information transfer,

namely,

1. Zero information transfer.

2. Information transfer asymmetry.

3. Information conservation.

The property of information conservation is unique to our formulation of information transfer in dy-

namical system. We will discuss the above three properties of information transfer in details later.

In order to study the information transfer between the subspaces of the dynamical system (2.2), it

is sufficient to study the transfer from subspace x to subspace y, for the system (3.1). To calculate the

information transfer from x to y, we need to study the evolution of the density, not only for (3.1), but

also for the modified system, given by

x
′

= x

y
′

= fy(x, y) + ξy (3.2)

Following (10), we say that x is frozen (held constant), as the system evolves from time step t to time

step t+ 1.

Remark 3. We use the notation ρ(·) to denote the density for any variable for the system (3.1) and

ρ6x(·) to denote the density of a variable for the system (3.2). Here 6 x denotes that x has been frozen.

With this, we will now present some definitions which will be important for understanding the

properties of information transfer.

Definition 4. y dynamics is said to be not influenced by dynamics of x if

ρ(y(t+ 1)|y(t)) = ρ6x(y(t+ 1)|y(t))

The above condition implies that the conditional probability density of y(t+ 1), conditioned on y(t),

is not changed by the absence of x(t) and hence the dynamics of y are not influenced by x.
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Definition 5. Consider the following splitting of y ∈ R|y| subspace i.e., y = (y>1 , y
>
2 )>, where

yk ∈ R|yk| for k = 1, 2 and |y1|+ |y2| = |y|. We say that y1 and y2 are dynamically independent if

ρ(y) = ρ(y1)ρ(y2)

⇓

ρ(y′|y) = ρ(y′1|y1)ρ(y′2|y2) and ρ6x(y
′ |y) = ρ6x(y

′
1|y1)ρ6x(y

′
2|y2)

where y
′

= y(t+ 1), y = y(t), and x = x(t).

The above definitions of zero influence and dynamical independence are used in stating the follow-

ing three properties for information transfer based on which we provide the expression for information

transfer :

Properties :

1. Zero transfer: If the y dynamics is not influenced by x dynamics then the information transfer

from x→ y i.e., Tx→y = 0.

2. Transfer Asymmetry: If the y dynamics is not influenced by x dynamics but x dynamics is

influenced by y dynamics then Tx→y = 0 but Ty→x 6= 0.

3. Information conservation : If y1 and y2 are dynamically independent as per Definition 5, then

following conservation property for the information transfer holds true

Tx→y(t) = Tx→y1(t) + Tx→y2(t)

Our goal is to derive an expression for information transfer that satisfies the above properties of

transfer. We provide following definition for information transfer for dynamical system

Definition 6. [Information Transfer] The information transfer between x and y for dynamical system

(2.2) as the system evolves from time t to time t + 1 and denoted by [Tx→y]
t+1
t is given by following

formula

[Tx→y]
t+1
t = H(ρ(y(t+ 1)|y(t)))−H(ρ6x(y(t+ 1)|y(t)) (3.3)
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where H(ρ(y)) = −
∫
R|y| ρ(y) log ρ(y)dy is the entropy of probability density function ρ(y) and

H(ρ6x(y(t + 1)|y(t)) is the entropy of y(t + 1), conditioned on y(t), where x has been freezed. The

two entropies in above expression are defined as follows:

H(ρ(y(t+ 1)|y(t))) =
∫
R2|y| ρ(y

′ |y) log ρ(y
′ |y)dy

′
dy

H(ρ6x(y(t+ 1)|y(t))) =
∫
R2|y|×|x| ρ6x(y

′ |y) log ρ6x(y
′ |y)ρ(x)dxdy

′
dy

The above definition of information transfer can be understood by rewriting the expression of

information transfer as follows:

H(ρ(y(t+ 1)|y(t))) = [Tx→y]
t+1
t +H(ρ6x(y(t+ 1)|y(t))) (3.4)

so that the total entropy of y is the sum of transfer from x and the entropy of y, when x is absent.

Now, using

H(Y |X) = H(X,Y )−H(Y )

and the fact that since x is frozen at time t, we have that H(y(t)) = H6x(y(t)). Hence, we have

[Tx→y]
t+1
t = H(ρ(y(t+ 1), y(t)))−H6x(ρ(y(t+ 1), y(t))) (3.5)

In the following, we prove that the proposed definition of information transfer satisfies the prop-

erties of information transfer

Theorem 7. The proposed expression of information transfer Eq. (3.3) satisfies all the three properties

of information transfer.

Proof. 1. Zero transfer: Assume that dynamics of y is not influenced by x, we then have ρ(y(t+

1)|y(t)) = ρ6x(y(t+ 1)|y(t)). Hence, we have

Tx→y(t) = H(ρ(y(t+ 1)|y(t)))−H(ρ(y(t+ 1)|y(t))) = 0 (3.6)

2. Transfer asymmetry: Assume that y is not influenced by x but y is influencing x, we then have

ρ(y(t+ 1)|y(t)) = ρ6x(y(t+ 1)|y(t))
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ρ(x(t+ 1)|x(t)) 6= ρ6y(x(t+ 1)|x(t)).

From the formula for information transfer, we get

Tx→y(t) = 0, Ty→x(t) 6= 0.

3. Information conservation: Let y1 and y2 be dynamically independent. Then we have

ρ(y) = ρ(y1)ρ(y2)

ρ(y′|y) = ρ(y′1|y1)ρ(y′2|y2)

and ρ6x(y
′ |y) = ρ6x(y

′
1|y1)ρ6x(y

′
2|y2)

Hence,H(ρ(y′|y)) = H(ρ(y′1|y1))+H(ρ(y′2|y2)) andH(ρ6x(y′|y)) = H(ρ6x(y′1|y1))+H(ρ6x(y′2|y2)),

so that

[Tx→y]
t+1
t = H(ρ(y′|y))−H(ρ 6x(y′|y))

= [H(ρ(y′1|y1))−H(ρ 6x(y′1|y1))] + [H(ρ(y′2|y2))−H(ρ 6x(y′2|y2))]

= [Tx→y1 ]t+1
t + [Tx→y2 ]t+1

t

Equation (3.3) gives the information transfer from subspace x to subspace y of the dynamical

system (3.1), as it evolves from time t to time t + 1. The general expression for information transfer

between scalar state zi to scalar state zj can be written as

[Tzi→zj ]
t+1
t = H(ρ(zj(t+ 1)|zj(t)))−H(ρ6zi(zj(t+ 1)|zj(t))) (3.7)

Example 8. Correlation does not imply causation. It is well known that correlation may not im-

ply causation. Our definition of information transfer also verifies this fact, as is illustrated by the

following example. Consider the following linear system with additive zero mean unit variance i.i.d.

Gaussian noise.

x(t+ 1) =.5x(t) + ξx(t)

y(t+ 1) =.3x(t) + .7y(t) + ξy(t)

(3.8)
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Figure 3.1 (a) The states are highly correlated. (b) The information transfer between the states.

As can be seen from fig 8(a), the states x and y are highly correlated, but from the system dynamics

(3.8), the state y does not affect the dynamics of x and so, intuitively, y should not cause x. This is

reflected in fig. 8(b), where we find that the information transfer from y to x is zero, whereas, since x

affects y, the transfer from x to y is non-zero.

The above example allows us to believe that our formalism of information transfer can be used to

infer about the causal structure in a dynamical system. In later chapters, we will see, when directed in-

formation and transfer entropy gives counter-intuitive results about the causal structure in a dynamical

system, how our formalism gives the correct information about the causal structure.

3.1.1 Information Transfer and Causal Inference in Nonlinear Systems

In this subsection, we connect information transfer and causal inference for general nonlinear

systems. However, we will consider systems without noise. In particular, we consider the system

zt+1 = S(zt) (3.9)
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where S : Rn → Rn is assumed to be at least continuous and z(t) ∈ Rn. In component form, equation

(3.9) can be written as

z1
t+1 = S1(z1

t , z
2
t , · · · , znt )

z2
t+1 = S2(z1

t , z
2
t , · · · , znt )

...

znt+1 = Sn(z1
t , z

2
t , · · · , znt )

(3.10)

Information transfer between the states of a dynamical system is defined in terms of difference of

certain entropies, as the dynamical system evolves in time. As such to compute the information

transfer, it is necessary to know the evolution of densities. This is given by the Perron-Frobenius (PF)

operator

P : L1(Rn)→ L1(Rn) (3.11)

and is defined as ∫
ω
Pρ(z)dz =

∫
S−1(ω)

ρ(z)dz (3.12)

for any ω ∈ B(Rn), where B(Rn) is the Borel σ-algebra on Rn. When S is non-singular and invert-

ible, the PF operator can be written explicitly as

Pρ(z) = ρ[S−1(z)]|J−1| (3.13)

where J is the Jacobian of S and | · | signify the determinant. The joint density ρ(z) is used to define

the Shannon entropy

H(z) = −
∫

Ω
ρ(z) log ρ(z)dz (3.14)

where Ω is the sample space.

Assumption 9. We assume Ω to be Cartesian product of Ω1,Ω2, · · · ,Ωn, in which z1, z2, · · · , zn are

respectively lying. Here each Ωi are open in R, for i = 1, 2, · · · , n.

The marginal entropy of any variable of interest, say z1 is defined as

H(z1) = −
∫

Ω1

ρ1(z1) log ρ1(z1)dz1 (3.15)



www.manaraa.com

21

where ρ1 = ρ(z1) =
∫

Ω2n
ρ(z)dz2dz3 · · · dzn is the marginal distribution of z1. Here we use the

notation

Ωjn = Ωj × Ωj+1 × · · · × Ωn, 1 ≤ j ≤ n, and Ω1n = Ω. (3.16)

We further use the notation

ρ6i = ρ(z1, · · · zi−1, zi+1, · · · , zn)

=

∫
Ωi

ρ(z1, · · · zi−1, zi+1, · · · , zn)dzi

ρ6i 6j = ρ(z1, · · · zi−1, zi+1, · · · , zj−1, zj+1 · · · , zn)

=

∫
Ωi×Ωj

ρ(z1, · · · zi−1, zi+1, · · · , zj−1, zj+1, · · · , zn)dzidzj

With this, we state the following theorem which connects information transfer with causal infer-

ence.

Theorem 10. If Sj is independent of zi, then Tzi→zj = 0. At the same time, Tzi→zj need not be zero

if Sj does not rely on zi.

Proof. Without loss of generality, we assume i = 2 and j = 1, so that we look at the information

transfer from z2 to z1. We consider the system zt+1 = S(zt) given in component form as in (3.10).

Define ẑit = zit+1 and consider the dynamical system

zit+1 = Si(z)

ẑit+1 = Si(ẑ)

(3.17)

for i = 1, 2, · · · , n. Now, from (3.5),

Tz2→z1 = H(z1
t+1, z

1
t )−H6z2(z1

t+1, z
1
t )

= H(z1
t+1, ẑ

1
t+1)−H 6z2(z1

t+1, ẑ
1
t+1) (3.18)

It is given that S1(z) is independent of z2. Hence, S1(ẑ) is independent of ẑ2 and also z2. To

prove that if S1(z) is independent of z2, then Tz2→z1 = 0, we have to show

H(z1
t+1, ẑ

1
t+1) = H6z2(z1

t+1, ẑ
1
t+1)
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Let U be the sample space where the system (3.17) evolves. Note that U satisfies assumption (9)

and we use the notation defined in (3.16). For notational convenience we use the notation x1
t to signify

the subspace (z1
t , ẑ

1
t )>, x2

t = z2
t , yt = ẑ2

t , xit = (zit, ẑ
i
t)
> for i = 3, · · · , n. Similarly we define Ui

and Uy. Hence we need to prove

H(x1
t+1) = H6x2(x1

t+1)

The dynamical system (3.17) can be written as

xit+1 = φi(xt, yt)

x2
t+1 = φ2(xt, yt)

yt+1 = φy(xt, yt)

(3.19)

for i = 1, 3, · · · , n and φi = (Si, Si)
>, φ2 = S2 and φy = S2. Define Φ =

(
φ>i φ2 φy

)>
. For

any subset of Ũ1, ũ1 ∈ Ũ1, we have∫
ũ1

(Pρ6x2)1(x1)dx1 =

∫
ũ1×U3n×Uy

(Pρ6x2)(x1, y, x3, · · · , xn)

×dx1dx3 · · · dxndy

=

∫
Φ−1
62 (ũ1×U3n×Uy)

ρ6x2(x1, y, x3, · · · , xn)

×dx1dx3 · · · dxndy

Now1,

Φ−1
62 (ũ1 × U3n × Uy) = Φ−1

1 62 ũ1 × U3n × Uy (3.20)

Hence, ∫
ũ1

(Pρ6x2)1(x1)dx1 =

∫
Φ−1

1 62 ũ1

dx1 ·
∫
U3n×Uy

ρ 6x2(x1, x3, · · · , xn, y)

×dx1dx3 · · · dxndy

=

∫
Φ−1

1 62 ũ1

ρ1(x1)dx1 =

∫
φ1
−1ũ1

ρ1(x1)dx1

1In the proof, Φ−1
1 62 ũ1 and φ−1

1 ũ1 is the projection of the Cartesian product on the subspace x1.
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where the last equality follows from the fact that φ1 and hence φ−1
1 is independent of x2.

Again, ∫
ũ1

(Pρ)1(x1)dx1 =

∫
ũ1×U2n×Uy

Pρ(x, y)dxdy

=

∫
Φ−1(ũ1×U2n×Uy)

ρ(x, y)dxdy

=

∫
φ−1ũ1×U2n×Uy

ρ(x, y)dxdy

=

∫
φ−1
1 ũ1

dx1

∫
U2n×Uy

ρ(x)dx2 · · · dxndy

=

∫
φ−1
1 ũ1

ρ1(x1)dx1.

Hence, ∫
ũ1

(Pρ6x2)1(x1)dx1 =

∫
ũ1

(Pρ)1(x1)dx1 (3.21)

for any ũ1 ∈ U1. Hence, (Pρ 6x2)1 = (Pρ)1 almost everywhere, when φ1 is independent of x2. Now,

in (15) it was shown that

H6x2(x1
t+1) = −

∫
U

(Pρ6x2)1(y1) log((Pρ6x2)1(y1))

·ρ(x2|x1, x3 · · · , xn, y)

·ρ3···n,y(x
3, · · ·xn, y)dy1dx2dx3 · · · dxndy

= −
∫
U

(Pρ)1(y1) log((Pρ)1(y1))

·ρ(x2|x1, x3 · · · , xn, y)

·ρ3···n,y(x
3, · · ·xn, y)dy1dx2dx3 · · · dxndy

= −
∫
U1

(Pρ)1(y1) log((Pρ)1(y1))dy1

·
[ ∫

U2

∫
U3n×Uy

ρ(x2|x1, x3 · · · , xn, y)

·ρ3···n,y(x
3, · · ·xn, y)dx2dx3 · · · dxndy

]
= −

∫
U1

(Pρ)1(y1) log((Pρ)1(y1))dy1

= H(x1
t+1)

This is because the integrand in the brackets integrate to one. Hence, H(x1
t+1) = H6x2(x1

t+1), that is,

H(z1
t+1) = H6z2(z1

t+1)
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Hence, Tz2→z1 = 0.

3.2 n-step Information Transfer

The information transfer defined in definition (6) gives the information transferred from x to y as

the dynamical system evolves from time step t to time step t+ 1. So one can look at this definition as

a one-step transfer. However, it may happen that x1 does not affect x2 in one time step, but affects it

in two time steps. For, example, consider the linear system described by the graph given in figure 3.2.

1 3

0 0 0
1 0 0
0 1 0

A
 
 =  
 
 

2

Figure 3.2 A system where two step transfer is non-zero

Here the one step information transfer from x1 to x3 is zero because x1 does not affect the dy-

namics of x3 in one time step. But x3, at the second time step, is affected by x1 and this should lead

to a non-zero transfer. This is what we call indirect transfer.

We propose a natural generalization of the definition of one step information transfer to n step

transfer. The n step transfer from x to y is defined as transfer from x to y as the system evolves from

time step t to time step t+ n for n > 0. To define the n step transfer we introduce following notation

yt+nt = (y(t+ n), y(t+ n− 1), . . . , y(t)).

The n step transfer is defined as follows :

Definition 11. [n-step Transfer] The information transferred over n > 0 time steps from x to y,

denoted as [Tx→y]
t+n
t , as the dynamical system (3.1) evolves from time step t to t+ n is defined as

[Tx→y]
t+n
t = H(ρ(y(t+ n)|yt+n−1

t )−H(ρ6xt+n−1
t

(y(t+ n)|yt+n−1
t )

where ρ6xt+n−1
t

(·) is the notation that is used to signify the fact that dynamics in x component is

freezed over the time period from t to t+ n− 1.
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Using the proposed definition of n-step transfer to the system of Fig. 3.2, we have the two step

information transfer from x1 to x3 to be non zero. This is in accordance with the intuition that since

x1 affects x3 in the second time step, the information transfer in two time step should be non-zero.

With this definition of n-step transfer, we have

[Tx→y]
t+2
t = H(ρ(y(t+ 2)|yt+1

t )−H(ρ6xt+1
t

(y(t+ 2)|yt+1
t )

= H(ρ(yt+2
t ))−H(ρ6xt+1

t
(yt+2
t ))− [Tx→y]

t+1
t

where we have used the fact that

[Tx→y]
t+1
t = H(ρ(yt+1

t ))−H(ρ6xt(y
t+1
t ))

Hence,

[Tx→y]
t+2
t + [Tx→y]

t+1
t = H(ρ(yt+2

t ))−H(ρ 6xt+1
t

(yt+2
t )) (3.22)

Equation (3.22), says that the total change in entropy, due to x, of the joint distribution of (y(t +

2)y(t+ 1)y(t)), as the system (3.1) evolves from time step t to time step t+ 2, is equal to the sum of

the information transfers from x to y over one time step and two time steps. In general, we have the

following

Theorem 12.

n∑
i=1

[Tx→y]
t+i
t = H(ρ(yt+nt ))−H(ρ6xt+n−1

t
(yt+nt ))

Proof. We prove this by induction. We saw that this is true for i = 1, 2. Let this be true for i = k.

Now,

[Tx→y]
t+k+1
t = H(ρ(y(t+ k + 1)|yt+kt ))

−H(ρ6xt+k
t

(y(t+ k + 1)|yt+kt ))

=
(
H(ρ(yt+k+1

t ))−H(ρ 6xt+k
t

(yt+k+1
t ))

)
−(

H(ρ(yt+kt ))−H(ρ6xt+k−1
t

(yt+kt ))
)

=
(
H(ρ(yt+k+1

t ))−H(ρ 6xt+k
t

(yt+k+1
t ))

)
−

k∑
i=1

[Tx→y]
t+i
t
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Hence,

k+1∑
i=1

[Tx→y]
t+i
t = H(ρ(yt+k+1

t ))−H(ρ6xt+k
t

(yt+k+1
t ))

Hence the proof.

We provide following definition of average information transfer.

Definition 13. [Average Information Transfer] We define the average information transfer from x to

y as

T̄x→y = lim
n→∞

1

n

n∑
i=1

[Tx→y]
i
0 (3.23)

Lemma 14. We have

T̄x→y = H̄(Y )− H̄ 6x(Y )

where H̄(Y ) = limn→∞
1
nH(ρ(yn0 )) is the entropy rate of y and H̄6x(Y ) = limn→∞

1
nH(ρ6x(yn0 )) is

the entropy rate of y, when x is held frozen.

Proof. The proof follows directly from the definition of average information and theorem (12).

Though our concept of information transfer is way different than directed information, we will

see later (chapter 4) that the average information transfer is indeed related to the average directed

information.

3.3 Information Transfer and Dynamics of Linear Systems

A linear system may not exhibit the various complex dynamics that a nonlinear system can have,

but still, the time domain trajectories of a linear system show different behaviours. The different

behaviours that a linear system exhibit is governed by the eigenvalues of the system matrix. For

example, if the eigenvalues of a linear discrete time system are outside the unit circle in the complex

plane, then the trajectories diverge to infinity. Again, if they are on the unit circle, then the trajectories
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oscillate. Similarly, if the eigenvalues are inside the unit circle, then the trajectories are stable, but

depending on whether the eigenvalues are complex or real, the trajectories oscillate before settling

down or does not oscillate. So one may think that the transient information transfer between the states

should also show similar trends, depending on the location of the eigenvalues. In this section, we

show, via simulations, that the transient one step information transfer in a linear system does show

similar trends.

Case I : System is stable with real eigenvalues.

We consider a two dimensional linear systemx(t+ 1)

y(t+ 1)

 =

 0 0.4

0.4 0


x(t)

y(t)


In this case, the eigenvalues are real and are inside the unit circle. Hence, the trajectories does not

show any oscillations and this is shown in fig. 3.3(a).

(a) (b)

Figure 3.3 (a) Trajectories of the system. (b) IT from x to y.

The information transfer from x to y is shown in fig. 3.3(b). From the trajectory plot, we see that

the trajectories show no oscillations and as expected, the transient information transfer also show no

oscillation in the transients.

Case II : System is stable with complex eigenvalues.
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We consider a two dimensional linear systemx(t+ 1)

y(t+ 1)

 =

 0 1

−0.952 0


x(t)

y(t)


In this case, the eigenvalues are imaginary and are inside the unit circle. Hence, the trajectories

initially show oscillations and then settle to the steady state value. This is shown in fig. 3.4(a).

(a) (b)

Figure 3.4 (a) Trajectories of the system. (b) IT from x to y.

The information transfer from x to y is shown in fig. 3.4(b). From the trajectory plot, we see

that the trajectories show oscillations and as expected, the transient information transfer also shows

oscillation in the transients and then settles to the steady state value.

Case III : System is oscillatory.

Next consider a two dimensional linear systemx(t+ 1)

y(t+ 1)

 =

 0 1

−1 0


x(t)

y(t)


In this case, the eigenvalues are on the unit circle. Hence, the trajectories oscillates and this is shown

in fig. 3.5(a).

From the trajectory plot, we see that the trajectories oscillate with constant amplitude and so does

the transient information transfer, which is shown in fig. 3.5(b).

Case IV : System is unstable.
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(a) (b)

Figure 3.5 (a) Trajectories of the system. (b) IT from x to y.

We consider a two dimensional linear systemx(t+ 1)

y(t+ 1)

 =

 0 1

−1.012 0


x(t)

y(t)


In this case, the eigenvalues are outside the unit circle and hence the system is unstable. The trajec-

tories diverge to infinity and as the eigenvalues have imaginary part, the trajectories oscillate as well.

This is shown in fig. 3.6(a) and the information transfer from x to y is shown in fig. 3.6(b).

(a) (b)

Figure 3.6 (a) Trajectories of the system. (b) IT from x to y.

In this case also, we find that the trajectories and the information transfer follow similar patterns.

So it is not wrong to believe that the information transfer does throw light on the nature of dynamics
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exhibited by a dynamical system. So one can use the information transfer to infer about the dynamics

of a nonlinear system also and this is addressed in the next section.

3.4 Set Oriented Method for Computation of Information Transfer

The definition of information transfer between the states is based on the evolution of the prob-

ability density of the states and hence it is governed by the Perron-Frobenius operator. As we are

going to see in a later chapter, in case of linear systems with additive Gaussian noise, the linearity

property allows us to derive analytic expressions for the information transfer between the states. But

for general discrete time maps, it is not possible to derive analytic closed form expressions for the

information transfer. In fact, even in absence of noise, often it is difficult to derive an expression for

the Perron-Frobenius operator and hence it will be difficult to obtain the information transfer. So,

one has to look for numerical methods to compute the information transfer. In this section, we will

describe set oriented numerical methods for finding the information transfer.

In order to obtain a finite-dimensional approximation of the continuous P-F operator, one consid-

ers a finite partition of the state space X as follows :

X = {D1, D2, . . . , DL} (3.24)

such that X = ∪Li=1Di and Di ∩ Dj = φ for all i 6= j. With this partition, the finite dimensional

approximation of the P-F semi-group is a L× L matrix P such that

[P ]ij =
m(f−1(Dj) ∩Di)

m(Di)
(3.25)

where m is the Lebesgue measure. The ijth entry of the finite dimensional P matrix gives the prob-

ability of transition from cell Di to cell Dj . Hence [P ]ij = Prob(zt+1 ∈ Dj |zt ∈ Di). Moreover, if

µz =

(
µz1 µz2 · · · µzL

)
is the density of z at time t, then

µz′ = µzP (3.26)

is the density of z at time step (t+ 1).
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In order to find the information transfer between the states in a system, we note that the one step

information transfer from state x to state y can be written as

[Tx→y]
t+1
t = H(ρ(y′, y))−H6x(ρ(y′, y)). (3.27)

This is because H(ρ(y′|y)) = H(ρ(y′, y)) − H(ρ(y)) and H(ρ(y)) = H6x(ρ(y)). We will use

equation (3.27) to compute the one step information transfer numerically.

Note that, the marginal distribution of (y′, y) can be obtained if one can compute the joint distri-

bution ρ(z′, z). Let µz be the distribution of z at time step t. Hence,

Prob(z′ ∈ Dj , z ∈ Di) = Prob(z ∈ Di).Prob(z′ ∈ Dj |z ∈ Di) = µiz[P ]ij (3.28)

So starting with an initial distribution µ0, using (3.26) and (3.28) one can calculate the joint probability

density of (z′, z), as the system evolves in time and thus one can calculate the marginal distribution

ρ(y′y). Let µy′y be the distribution of the variable (y′, y), then

H(ρ(y′, y)) = −
∑

[µy′y]i log[µy′y]i (3.29)

Similarly, one can compute the entropy of (y′, y) when x is held frozen and thus obtain the informa-

tion transfer. Next, we illustrate this method of computation of information transfer in two different

systems, namely a linear system, where the information transfer can also be calculated analytically

and a non-linear discrete time map.

Example 15 (Linear system). Consider the linear system

xt+1 = .9xt + ξx

yt+1 = 10x+ .5yt + ξy

(3.30)

From the system equations, we see that while x enters the dynamics of y, y does not affect the dynamics

of x and hence the information transfer from x to y should be non-zero, whereas, the transfer from y

to x should be zero. In fact, in a later chapter, we prove the result for zero transfer for linear systems.

Figure 3.7(a) shows the information transfer from state x to state y, calculated using the set-oriented

method and also using the formula for information transfer in a linear system. We find that though

the values in the transients are not that close, as the system reaches steady state, the values of the
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Figure 3.7 (a) IT from x to y. (b) IT from y to x.

transfer match closely. Fig. 3.7(b) shows the information transfer from y to x. From the theory (we

prove this result later) we know that the information transfer from y to x should be zero. This is shown

by the plot obtained by using the formula for information transfer. The other plot shows the transfer

obtained using the set-oriented methods and we find that thought the transfer is non-zero in the initial

stages, it goes to zero as the system evolves and thus validating the use of set-oriented methods to

calculate the information transfer. The value of the transfer, calculated using the set-oriented method

depends on a number of factors like how the state space is discretized and how many initial points are

chosen to obtain the finite dimensional P-F matrix. However, as the system evolves, these factors play

less and less important roles and as the system approaches the steady state, the values of the transfer

calculated using the set-oriented method approached the value obtained using the analytic expression

of transfer.

Example 16 (Henon map). In this example we consider the Henon map which is given by

x′ = 1 + y − ax2

y′ = bx

(3.31)

with a, b > 0.

For the first set of simulations, we choose a = 1.4 and b = .3. This is when the Henon map exhibits

chaotic behaviour and has a chaotic attractor, as shown in fig. 3.8(a). The corresponding invariant
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Figure 3.8 (a) Phase space trajectories (b) Invariant measure. (c) Information transfer from x to
y. (d) Information transfer from y to x.
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measure for the chosen set of parameters is shown in fig 3.8(b). The corresponding information

transfers are shown in fig 3.8(c) and fig 3.8(d).
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Figure 3.9 (a) Information transfer from x to y. (b) Information transfer from y to x.

For the second set of simulations simulation purposes, we choose a = .18 and b = .7. With these

set of parameter values, the Henon map has a periodic orbit. Figure 3.9(a) shows the information

transfer from x to y and fig. 3.9(b) shows the information transfer from y to x. Before reaching the

steady state, from the information transfer plots, it is clear that x has a greater influence on y than

what y has on x. Moreover, the information transfer oscillates and this is because of the presence of

the periodic orbit.

Example 17 (Van der Pol Oscillator). Van der Pol oscillator is a non-conservative system with a

non-linear damping and it evolves in time according to the second order differential equation

ẍ− µ(1− x2)ẋ+ x = 0 (3.32)

where x is the position and µ is a scalar indicating the nonlinearity and the strength of damping.

Using the variable y = ẋ, the system equations can be written as

ẋ = y

ẏ = µ(1− x2)y − x

When µ = 0, there is no damping and so the equation of motion becomes

ẍ+ x = 0
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Hence, in this case, it represents a simple harmonic oscillator and there is conservation of energy.
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Figure 3.10 (a) Limit cycle for µ = 0.5. (b) Corresponding invariant density. (c) Information
transfer from x to y. (d). Information transfer from y to x.

When µ > 0, the system has a limit cycle and for µ = 0.5 the this is shown in fig 3.10(a). The

corresponding invariant measure is shown in fig. 3.10(b). The information transfers from x to y and

from y to x are shown in figures 3.10(c) and 3.10(d) respectively. We find that both the information

transfers show oscillations which is because of the presence of the limit cycle. In fact, both in the

Henon map example and the Van der Pol oscillator, we find that whenever there is a limit cycle in the

system, the information transfers show oscillations.

In future, we hope to analyze complex dynamics from information transfer viewpoint and see how

the information transfer throws light on the dynamics of the system. One starting point is the limit

cycle behaviour, where we saw that the presence of limit cycle reflects in the information transfer. We
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hope to capture more characteristics of complex systems in the future, using our proposed method of

information transfer.
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CHAPTER 4. INFORMATION TRANSFER IN LINEAR CONTROL SYSTEM

Information transfer is expressed as a difference of two entropies. As such, to compute it, knowl-

edge about the evolution of densities, as a dynamical system evolves in time is necessary. For general

nonlinear systems, there is no closed form expression for the evolution of densities. However, for

linear dynamical systems, with a Gaussian assumption on the initial distribution of states and noise,

one can derive closed-form expressions for information transfer.

4.1 Information Transfer Between the States

For simplicity, in this section we will consider a stochastic perturbed linear dynamical system

without input. Let the system be given by

z(t+ 1) = Az(t) + σξ(t) (4.1)

where z(t) ∈ RN and ξ(t) is vector valued Gaussian random variable with zero mean and unit vari-

ance. We assume that the initial conditions are Gaussian distributed with probability density function

ρ0(z) =
1

(2π)
N
2 |Σ(0)|

1
2

exp
(
z>Σ(0)−1z

)
Since the system is linear, the distribution of the system state for all future time will remain Gaussian

with covariance Σ(t) satisfying

AΣ(t− 1)A> + σ2I = Σ(t)

To define the information transfer between various subspace we again introduce following notation to

split the A matrix

z(t+ 1) =

x′
y
′

 =

Ax Axy

Ayx Ay


x
y

+ σξ (4.2)
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The A matrix can be further split using the subspace decomposition x = (x>1 , x
>
2 )> as follows:

Ax Axy

Ayx Ay

 =


Ax1 Ax1x2 Ax1y

Ax2x1 Ax2 Ax2y

Ayx1 Ayx2 Ay

 (4.3)

Based on the decomposition of the system A matrix we can also decompose the covariance matrix Σ

at time instant t as follows.

Σ =

Σx Σxy

Σ>xy Σy

 =


Σx1 Σx1x2 Σx1y

Σ>x1x2 Σx2 Σx2y

Σ>x1y Σ>x2y Σy


(4.4)

Using the above notation, we state following theorem providing explicit expression for information

transfer in linear dynamical system during transient and steady state.

Theorem 18. Consider the linear dynamical system (4.1) and associated splitting of state space in

Eqs. (4.2) and (4.3). We have following expression for information transfer between various subspace

[Tx→y]
t+1
t =

1

2
log
|AyxΣs

y(t)A
>
yx + σ2I|

σ2
(4.5)

where Σs
y(t) = Σx(t)−Σxy(t)Σy(t)

−1Σxy(t)
> is the Schur complement of Σy(t) in the matrix Σ(t).

[Tx1→y]
t+1
t =

1

2
log

|AyxΣs
y(t)A

>
yx + σ2I|

|Ayx2(Σs
y)yx2(t)A>yx2 + σ2I|

(4.6)

where (Σs
y)yx2 is the Schur complement of Σy in the matrixΣx2 Σx2y

Σ>x2y Σy


Proof. From the formula of information transfer we have

[Tx→y]
t+1
t = H(ρ(y

′ |y))−H6x(ρ(y
′ |y))
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So to compute the transfer, we need to know ρ(y
′ |y) = ρ(y

′
,y)

ρ(y) and ρ 6x(y
′ |y). Furthermore, since all

the probability density function involved are Gaussian, we use following formula for the entropy of

Gaussian density function.

H(ρ(w)) =
1

2
log((2πe)N |Σ(t)|)

for ρ(w) of the form

ρ(w) =
1

(2π)
N
2 |Σ(t)|

1
2

exp

(
−1

2
w>Σ(t)−1z

)
Hence to compute the required transfer, we only need to know the covariance of ρ(y

′ |y) and ρ6x(y
′ |y).

The covariance matrix for the joint z
′

and z is given by

Rz′z =

Σz′ Σz′z

Σzz′ Σz

 , Σz =

Σx Σxy

Σ>xy Σy


where Σz′ = AΣzA

> + σ2I , Σzz′ = ΣzA
>, Σz′z = AΣz = Σ>

zz′
Hence, we have

Ry′y =

Σy′ Σy′y

Σ>
y′y

Σy

 , y
′ |y ∼ N (−,Σy′ − Σy′yΣ

−1
y Σ>

y′y
)

Σy′ = AyxΣxA
>
yx +AyΣxyA

>
yx +AyxΣxyA

>
y

+AyΣyA
>
y + σ2I

Σy′y = AyxΣxy +AyΣy

Note that since the entropy is function of covariance, we ignore the explicit computation of mean for

the underlying Gaussian random variable. After simplification, we obtain

ρ(y
′ |y) ∼ N (−, Ayx(Σx − ΣxyΣ

−1
y Σ>xy)A

>
yx + σ2I).

For ρ6x(y
′ |y) we look at the system, y

′
= Ayy+σξy. Hence, we have ρ 6x(y

′ |y) ∼ N
(
−, σ2I

)
. Hence

we have

Tx→y(t) =
1

2
log
|AyxΣs

y(t)A
>
yx + σ2I|

σ2

where Σs
y(t) = Σx(t)− Σxy(t)Σy(t)

−1Σxy(t)
>.
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To compute the information transfer from x1 → y, we need to compute covariance for ρ6x1(y
′ |y).

Hence, we look at the system where x1 is absent. Hence, we look at

x
′
2 = Ax2x2 +Ax2yy + ξx2

y
′

= Ayx2x2 +Ayy + ξy (4.7)

The expression for ρ(y
′ |y) remains unchanged from the previous case. To compute ρ6x1(y

′ |y), we

use system equation (4.7) and use procedure similar to one used in the derivation of ρ6x(y
′ |y) with x

replaced with x1. Hence, we have

ρ6x1(y
′ |y) = N

(
−, Ayx2(Σs

y)yx2(t)A>yx2 + σ2I
)

(4.8)

where,

(Σs
y)yx2(t) = (Σx2(t)− Σx2y(t)Σ

−1
y (t)Σ>x2y(t)).

Hence,

[Tx1→y]
t+1
t =

1

2
log

|AyxΣs
y(t)A

>
yx + σ2I|

|Ayx2(Σs
y)yx2(t)A>yx2 + σ2I|

(4.9)

The results from the above theorem can be used to provide general expression for information

transfer between scalar state zi and zj for linear network system. In particular with no loss of gener-

ality we can assume zi = z1 and zj = z2, then the expression for Tz1→z2 can be obtained from (4.6)

by defining

x1 := z1, y = z2, x2 := (z3, . . . , zN )

z 62 = (z1, z3, z4 . . . , zN ), z61 62 = (z3, z4, . . . , zN )

For linear systems with Gaussian noise, the one step zero transfer can be characterized by looking

at system matrix A. In particular, we have the following theorem.

Theorem 19. Azjzi = 0, if and only if [Tzi→zj ]
t+1
t = 0.
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Proof. Without loss of generality, we prove the result for i = 1 and j = 2. With the notation

x1 := z1, y = z2, , x2 := (z3, . . . , zN )

we have

[Tx1→y]
t+1
t =

1

2
log

|AyxΣs
y(t)A

>
yx + σ2I|

|Ayx2(Σs
y)x 61(t)A>yx2 + σ2I|

(4.10)

where Ayx = [Ayx1 Ayx2 ] and

Σs
y(t) = Σx1 − Σx1yΣ

−1
y Σ>x1y Σx1x2 − Σx1yΣ

−1
y Σ>x2y

Σ>x1x2 − Σx2yΣ
−1
y Σ>x1y Σx2 − Σx2yΣ

−1
y Σ>x2y


So, if Ayx1 = 0,

AyxΣs
y(t)A

>
yx + σ2I

= Ayx2(Σx2 − Σx2yΣ
−1
y Σ>x2y)A

>
yx2 + σ2I

= Ayx2(Σs
y)x61(t)A>yx2 + σ2I

Hence,

[Tx1→y]
t+1
t =

1

2
log

|AyxΣs
y(t)A

>
yx + σ2I|

|Ayx2(Σs
y)x 61(t)A>yx2 + σ2I|

=
1

2
log
|Ayx2(Σs

y)x 61(t)A>yx2 + σ2I|
|Ayx2(Σs

y)x 61(t)A>yx2 + σ2I|
= 0

The other direction follows directly from the information transfer formula.

4.1.1 Examples

In this subsection, we look at two different simple examples to demonstrate how our formalism

of information transfer can be used to infer about the causality structure and influence in a dynamical

system.

Example 1 : Information transfer and causality. We consider a simple series RLC circuit with the
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states as the voltage across the capacitor and the current. The state space equations, with input voltage

to be zero, and noise ξ = [ξ1 ξ2]> are v̇c

i̇

 =

 0 1
C

− 1
L −R

L


 vc

i

+

 ξ1

ξ2

 (4.11)

We assume the initial voltage across the capacitor is vc(0). The resistor, capacitor and inductor
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Figure 4.1 a) RLC series circuit; b) Information transfer between the states

values are 1 ohm, 1 farad and 1 Henry respectively. The circuit is shown in figure 4.1 (a). We

discretize the system and look at the information transfer between the states for the discretized system.

The information transfer is shown in figure 4.1 (b). We know that it is the voltage vc that causes the

current in the circuit. So, the voltage is the cause and the current is the effect. This can be inferred

from the information transfer between the states. As we see, the information transfer from the voltage

to the current is non-zero, whereas, the transfer from the current to the voltage is zero. Hence, the

voltage affects the current, but the current does not affect the voltage. Hence, we infer that the voltage

is the cause and current is the effect.

Example 2 : Information transfer and influence. In this example, we look at a mass spring system

given in figure (5). We assume that m � M and the spring constants are all equal (equal to one).

Intuitively, since m � M , the mass m does not have much influence on the motion of the system,

whereas, the bigger masses M has more influence on the motion of the system. This is again verified

by the information transfer from the individual masses to the subspace formed by the other two masses.

The information transfer from M = 100 to the rest of the system is 0.1121, while the transfer from
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m = 1 to the rest of the system is 0.0095.

M Mm
k kk k

Figure 4.2 Mass spring system

So we say that the larger masses have more influence on the system compared to the smaller mass.

This is also consistent with the concept of participation factor (28), where the authors have shown that

the bigger masses participate a lot more than the smaller mass.

4.2 Information Transfer in Linear Control Systems

In this section, we derive an expression for information transfer in control dynamical system. In

particular, we derive expressions for information transfer from state to output, input to state, and input

to output. For the simplicity of discussion, we also restrict our discussion to single input single output

case. We consider the following linear linear time invariant system with input and output.

z(t+ 1) = Az(t) +Bu(t)

θ(t) = Cz(t) + ω(t)

(4.12)

where z ∈ RN are the states, A ∈ RN×N , B and C are of appropriate dimensions, u(t) ∈ R is

the input, θ ∈ R is output and ω(t) is the output noise, which is assumed to be zero mean i.i.d.

Gaussian noise. For the simplicity of presentation, we will restrict our discussion to the case where

the state space z is split in only two subspace i.e., z = (x>, y>)> and the inputs and outputs are one

dimensional. With this assumption, we have following splitting of the A,B, and C matrices.

A =

Ax Axy

Ayx Ay

 , B =

Bx
By

 , C =

(
Cx Cy

)
(4.13)
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4.2.1 Information from Input to State

The evolution of the state x is x′ = Axx+Axyy+Bxu. In deriving the formulas in this subsection,

we think of the input u(t) as a i.i.d. Gaussian variable such that

E[u(t)u(t+ k)>] = 0,∀k 6= t and E[zu>] = 0.

Hence,

Σx′|x = AxyΣ
s
xA
>
xy +BxΣuB

>
x (4.14)

where Σs
x is the Schur complement of Σx in Σz and Σu is the covariance of the input at time t.

When the input u is held frozen,

Σ6ux′|x = AxyΣ
s
xA
>
xy (4.15)

Hence the information transfer from u to x is

Tu→x =
1

2
log
|AxyΣs

xA
>
xy +BxΣuB

>
x |

|AxyΣs
xA
>
xy|

(4.16)

where | · | is the determinant.

4.2.2 Information from State to Output

In this subsection, we look at the information transfer from the states of the system to the output

of the control system. For simplicity, we only look at the information transfer from the entire state

space z to the output θ. The general case of the information transfer from any state zi to any output θj

for a MIMO system can be dealt with similarly.

From the output equation, we have

Σθ′|θ = CΣz′C
> + Σω

−(CAΣzC
>)(CΣzC

>)−1(CAΣzC
>)>

where Σz′ = AΣzA
> +BΣuB

> and Σω is the covariance of the output noise.

When z is frozen, the output equation is

θ 6z(t) = ω(t) (4.17)
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Hence, Σ 6zθ′|θ = Σω.

So the transfer is

Tz→θ =
1

2
log
|Σθ′|θ|
|Σω|

where

Σθ′|θ = CΣz′C
> + Σω

−(CAΣzC
>)(CΣzC

>)−1(CAΣzC
>)>

4.2.3 Information from Input to Output

As before, we address the case of SISO systems for simplicity. We have

Σ′θ = CAΣzA
>C> + CBΣuB

>C>

Hence,

Σθ′|θ = CAΣzA
>C> + CBΣuB

>c> + Σω

−(CAΣzC
>)(CΣzC

>)−1(CAΣzC
>)> (4.18)

When u is frozen, we have

z′ = Az

θ = Cz + ω

(4.19)

Hence,

Σθ′6u|θ 6u = CAΣzA
>C> + Σω

−(CAΣzC
>)(CΣzC

>)−1(CAΣzC
>)> (4.20)

Hence the transfer is

Tu→θ =
1

2
log
|Σθ′|θ|
|Σθ′6u|θ 6u |

(4.21)

where Σθ′|θ and Σθ′6u|θ 6u are given by equations (4.18) and (4.20) respectively.
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4.3 Information Transfer and Structural Controllability and Observability

Structural controllability was developed by (29), and is a weaker notion of controllability, where

a system is said to structurally controllable, if either the system is controllable or is controllable

when the non-zero entries of the system matrix are perturbed so that the perturbed system becomes

controllable. Associated with a system

z(t+ 1) = Az(t) + ξ(t), z ∈ RN (4.22)

is a directed graph Z = (Vz, Ez) where Vz = {zi|i = 1, . . . , N} is the node set andEz is the edge set,

such that there is directed edge from zi to zj iff jith entry of A is non-zero. Now if a single control

input is placed at node k, then one can construct an extended graph G = (V,E), with one extra node

u and one extra edge from u to zk. With this, the system is said to structurally controllable if all the

nodes of the extended graph can be reached from node u (30). Since u is directly connected to zk,

one can say that the system, with input at zk, is structurally controllable if there exist paths to all the

nodes of Z from zk.

In this section, we show that if information transfer from the input to all the nodes is non-zero,

then the system is structurally controllable. Note that in this section, by information transfer, we will

mean n-step information transfer for n ∈ Z>0.

Theorem 20. If the k-step information transfer from state zi to zj of system (4.22) is non-zero for

some k ∈ Z>0, then there is a directed path from node zi to zj in the corresponding directed graph

for the system.

Proof. We prove this by contrapositive argument. Without loss of generality, we assume i = 2 and

j = 1. Suppose there is no path from z2 to z1. Hence, [Ak]12 = 0 for all k ∈ Z 1. We show that in

this case the k-step information transfer from z2 to z1 is zero for all k ∈ Z. The evolution of the states

can be written as

z(k) = Akz(0) +Ak−1ξ(0) + . . .+ ξ(k − 1) (4.23)

1Here [Ak]ij means the ijth entry of Ak
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Hence,

z1(k) =
N∑

j=1,j 6=2

[Ak](1j)zj(0) +
N∑

j=1,j 6=2

[Ak−1](1j)ξj(0)

+ . . .+ ξ1(k) (4.24)

since [Ak]12 = 0 and when z2 is held frozen, we have

z162(k) =
N∑

j=1,j 6=2

[Ak62](1j)zj(0) +
N∑

j=1,j 6=2

[Ak−1
62 ](1j)ξj(0)

+ . . .+ ξ1(k) (4.25)

where A 62 is the system matrix when z2 is held frozen, that is A62 is obtained from A by deleting the

second row and second column of A.

Now,

[A2](1j) =
N∑
i=1

a1iaij = a12a2j +
∑
i 6=2

a1iaij

=
∑
i 6=2

a1iaij = [A2
62]1j (4.26)

since a12 = 0.

Similarly,

[A3]1j = [A2A]1j = [A2A]1j =
∑
i

(a2)1iaij =

(a2)12a2j +
∑
i 6=2

(a2)1iaij =
∑
i 6=2

(a2)1iaij = [A3
62]1j

since [A2]12 = (a2)12 = 0. Let [Al]1j = [Al62]1j for some l ∈ Z>0. Then

[Al+1]1j = [AlA]1j = [AlA]1j =
∑
i

(al)1iaij =

(al)12a2j +
∑
i 6=2

(al)1iaij =
∑
i 6=2

(al)1iaij = [Al+1
62 ]1j

Hence, [Ak]1j = [Ak62]1j for all k ∈ Z. Hence from (4.24) and (4.25), z1(k) = z162(k). So,

H(z1(k)|z1(k − 1) . . . z1(0)) = H6z2(z1(k)|z1(k − 1) . . . z1(0)).

Hence [Tz2→z1 ]k0 = 0 for all k ∈ Z. Hence, if there is non zero information transfer from z2 to z1,

then there exists a directed path from z2 to z1.
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Theorem 21. If for some n ∈ Z>0, the information transfer from the input to all the states are

non-zero, then the system is structurally controllable.

Proof. We consider the extended graph associated with the dynamical system and consider the input

node as an extra state. From theorem (20), if the information transfer from the input to any state zi is

non-zero, then there exists a path from the input node to the node zi in the directed graph associated

with the system. So, if the information transfer from the input to all the states is non zero, then there

exists directed paths from the input node to all the other nodes in the directed graph associated with

the system and hence the system is input reachable and hence is structurally controllable.

Results for structural observability follows from duality and can be stated as

Theorem 22. If the information transfer from all the states to the output is non zero, then the system

is structurally observable.

Here we have proved the result for structural controllability for SISO case, but the result for MIMO

case is similar.

4.4 Information Transfer in Feedback Control Systems

Information theory and feedback systems are interlinked and researchers have studied their inter-

play (31; 32; 33; 34). Again, Massey (11) had shown that the feedback capacity (Cfb) satisfies

Cfb ≤ lim
n→∞

max
ρ(Xn||Y n−1)

1

n
I(Xn → Y n) (4.27)

where ρ(Xn||Y n−1) is the conditional distribution of Xn, causally conditioned on Y n−1. Again, in

(35), it has been proved that in a feedback system, the Bode sensitivity transfer function from the

output to the input is equal to the average directed information from the output (w) to the input (u),

where the average directed information from the output to the input is defined as

lim
n→∞

1

n
I(wn → un) (4.28)

In this section, we consider the following feedback control system (figure 4.3)

z(t+ 1) = Az(t) +Bu(t)

w(t) = Cz(t), u(t) = w(t) + ξ(t)

(4.29)
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Figure 4.3 Feedback control system

and we are interested in computing information flow from output to input of the feedback control

system i.e., Tw→u. This is the information transfer from the plant to itself. Towards this goal we write

the feedback control system as follows:

z(t+ 1) = (A+BC)z(t) +Bξ(t)

w(t) = Cz(t), u(t) = w(t) + ξ(t) (4.30)

Hence, H6w(ρ(u
′ |u)) = H(ρ(ξ

′
)). With this, and theorem (12), next we show that the Bode

sensitivity transfer function, S, from w to u is same as the average information transfer from w to u.

Theorem 23.

T̄w→u =

∫ 1
2

− 1
2

log |S(ej2πθ)|dθ

=

m∑
i=1

log |λi(Au)| (4.31)

where λi(Au) are the unstable eigenvalues of the open loop system.

Proof. From theorem (12), we have

T̄w→u = lim
T→∞

1

T

T∑
i=1

(Tw→u)i0

= lim
T→∞

1

T
[H(uT )−H6w(uT )] = lim

T→∞

1

T
[H(uT )−H(ξT )]

= lim
T→∞

1

2T
log
|ΣuT |
|ΣξT |

=

∫ 1
2

− 1
2

log
|u(ej2πθ)|2

|ξ(ej2πθ)|2
dθ

=

∫ 1
2

− 1
2

log |S(ej2πθ)|dθ =
m∑
i=1

log |λi(Au)|
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where λi(Au) are the unstable poles of A.

Hence, the average directed information and average information transfer are the same for the

above feedback control system. This theorem, along with the fact that the channel capacity of a

feedback channel is related to directed information, presents further evidence that our formulation of

information transfer, though developed from a dynamical systems point of view, is consistent with

already existing concepts in information theory and control theory. We feel this will allow us to study

the concepts of information theory, control theory and dynamical systems from a more fundamental

and common point of view.

Example 24. Consider the feedback system given in figure 5 with

A =

 4 2

0 0.7

 , B =

 1

0

 , C = [ −3.5 0 ]

We also assume that the noise ω is i.i.d. zero mean unit variance Gaussian white noise. The open

(a) (b)

Figure 4.4 (a) N-step information transfer; (b) Average information transfer and average directed
information

loop system has unstable pole at 4. Hence the Bode integral of the sensitivity transfer function is

log(4) = 1.3863. Figure 4.4(a) shows the N-step information transfer from the output of the system

to the input of the system. The steady state value of the information transfer is 1.3863. Similarly,

the average information transfer from the output to the input is also 1.3863. This is shown in figure
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4.4(b). In this figure we also plot the average directed information transfer from the output to input.

Here again we observe that the average information transfer converges to the Bode integral of the

sensitivity transfer function much faster than the average directed information.
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CHAPTER 5. INFORMATION TRANSFER AS A MEASURE OF CAUSALITY

5.1 Directed Information as a Measure of Causality

Directed information and transfer entropy are two of the most popular notions of information

transfer used to characterize causality. In this section, we show that these notions of information

transfer cannot faithfully capture the true causality structure in control dynamical system.

Directed information was first defined by Massey (11) as a generalization of Marko’s bidirec-

tional information (25). Both bidirectional information and directed information gave a sense of

direction to Shannon’s information theory and is viewed as a generalized information theory. Let

Xn = {X1, X2, · · · , Xn} and Y n = {Y1, Y2, · · · , Yn} be two stochastic processes, viewed as a se-

quence of random variables. Massey and Kramer (12) defined the directed information from Xn to

Y n as

I(Xn → Y n) = H(Y n)−H(Y n ‖ Xn) (5.1)

where H(Y n) is the entropy of the sequence Y n and

H(Y n ‖ Xn) :=

n∑
i=1

H(Yi|Y i−1, Xi) (5.2)

is the entropy of Y n causally conditioned on Xn. This differs from

H(yN |xN ) =

N∑
n=1

H(yn|yn−1xN )

in the fact that xn is replaced by xN in each term of equation (1.3).

As for transfer entropy, it is like a Kullback entropy and in the case of a Markov chain of order

one, Schreiber’s formula for transfer entropy from x to y can be written as
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TSx→y = −
∑

P (yn+1, yn) logP (yn+1|yn)−[
−
∑

P (yn+1, yn, xn) logP (yn+1|yn, xn)
] (5.3)

In both directed information and transfer entropy, the conditioning is done on the entire past and

so both these measures carry information about the entire past. So, if one likes to capture the one step

information transfer, the most natural definition of information transfer from x to y would be

T̂x→y = H(ρ(y
′ |y))−H(ρ(y

′ |y, x)). (5.4)

The directed information is asymmetric and gives a directional sense to the information and de-

fines a measure to determine the direction of information flow. Since the development of the concept

of directed information, this has been used in many different applications, like determining the chan-

nel capacity of a communication channel. Moreover, for Gaussian variables, directed information

and Granger causality (8), (6) are equivalent (36). This allows the concept of directed information

to be used as a measure of causality and hence it has been used to infer about the causal structure

of statistical processes. In the following, we demonstrate using three different examples how the di-

rected information fails to capture the true causality structure in dynamical systems setting. While the

arguments are made in the context of directed information, similar conclusions can be drawn in the

context of transfer entropy. We claim that at the heart of the problem is the manner in which causal

conditioning is performed in both these definitions of information transfer.

5.1.1 Examples

Example 25. Consider the following linear system with output
x1(t+ 1)

x2(t+ 1)

x3(t+ 1)

 =


0 0.5 0.5

0 0 0.5

0 1 0



x1(t)

x2(t)

x3(t)

+ σξ(k)

y(t) =

(
0 1 0

)
x(t) (5.5)

where xi(t) and y(t) are the states and output respectively at time step t and ξ(t) is a independent

identically distributed (i.i.d.) zero mean unit variance Gaussian noise and σ is a constant. We notice
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1

2 3

0 1 1
0 0 1
0 1 0

A
 
 =  
 
 

(a)

𝑥1 𝑥2 𝑥n−1 𝑥n𝑥k
Control Node Sensing Node

(b)

Figure 5.1 (a) Graph of dynamical system of example 1. (b) Graph of dynamical system of example
2.

that while there is directed path from x2 → x1 and x3 → x1 (fig. 5.1(a)), there is no path from x1

to x2 or from x1 to x3. Hence, we conclude that x1 is not a cause of x2 or x3, that is, x1 is not

influencing x2 or x3. So if we treat the dynamical system as a stochastic process, we expect that the

flow of information from x1 → x2 and x1 → x3 to be zero, thereby inferring that there is no causal

connection from x1 → x2 and x1 → x3. In fact closer examination reveals that x1 is not influencing

x2 and x3 over any number of time steps. However, as we show below, the directed information

fails to capture this true causal interaction between state x1, x2, and x3. In particular, we show that

I(xn1 → xn2 ) 6= 0 and I(xn1 → xn3 ) 6= 0 for any n. In Fig. 5.2(a), we plot the directed information

from x1 → x2 and x1 → x3 over different time steps.

(a) (b)

Figure 5.2 (a) Directed information plots for example 1. (b) Directed information plots for example
2.
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Example 26. Next we consider a single input single output linear system

x(t+ 1) =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 0


x(t) +



1

0

...

0


u

y(t) =

(
0 . . . 1

)
x(t) (5.6)

where x(t) ∈ RN . We note that the state x1 is directly controlled through u and measurements are

made at state xN . State xk, for 1 << k << N , is assumed to be some intermittent state. Since the

control input u does not affect state xk instantaneously, but through series of k delays, we expect the

information flow from state x1 to xk to be zero for time step t = 0, . . . , k−1. On the other hand since

xk influence xN again through series of delay we expect the information flow from xk to xN to zero

for t = k, . . . , N−k−1. However as we show in Fig. 5.2(b), directed information from x1 → xk and

xk → xN is nonzero for all time t = 0, . . . , conveying that there is instantaneous flow of information

from x1 to xk and from xk to xN . The simulation results in Fig. 5.2(b) are obtained forN = 30 nodes

with k = 15. This example demonstrates that the directed information fails to capture indirect path

of influence.

Example 27. We again consider the system in Eq. (5.5) with measurement made at state x2. We have

already seen that the directed information flow computed over any time step from x1 → x2 is nonzero.

Naturally, question arise as to the significance of the information flow from x1 → x2 for estimation

problems. In fact there is extensive literature on the connection between directed information and

Kalman filter (37). However, simple calculation show that the system matrix pair (A,C), from Eq.

5.5, is not observable with state x1 being the only state not observable. In fact state x1 is not only

unobservable it is also structurally unobservable. Using similar argument it can be show while there

is non zero flow of directed information from x1 → x2 and x1 → x3, the state x2 and x3 are not

structurally controllable with control placed at state x1.

The above examples reveal some serious deficiencies of directed information as a measure of

causality in dynamical system setting. Furthermore, the directed information value itself has no impli-
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cation on two of the most fundamental system theoretic concepts of controllability and observability.

This suggests that the directed information is a measure of statistical interaction between two signals

but it does not successfully capture the true dynamical interactions between dynamical states. We

expect that any meaningful definition of information transfer in network dynamical system should be

able to capture true causal interaction and also obey time constraint of information flow.

5.2 Information Transfer Captures the True Causal Structure

In this section, we revisit the examples presented in section (5.1) and show that the new definition

of information overcome some of the issues with directed information.

(a) (b)

Figure 5.3 (a) N-step information transfer for example 1. (b) N-step information transfer for ex-
ample 2.

Example 25 revisited : For the three state example discussed in section 5.1, we compute the

information transfer using our proposed definition of information transfer and the formula (4.6). In

Fig. 5.3(a), we plot the information transfer over n time steps and we notice that the information

transfer from x1 → x2 and x1 → x3 are identically zero.

Example 26 revisited : We compute the information transfer from x1 → xk and from xk → xN

for k = 15. Since, x1 is connected to xk through series of k delays, as expected the information

transfer Tx1→xk is zero over n < k time step and for n = k the information transfer jumps from

zero to non-zero value as shown in Fig. 5.3(b). Similarly information transfer from xk → xN also

shows a sudden jump. This proves that our proposed definition of information transfer obeys the time
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constraints of transfer.

Example 27 revisited : In this example, since there is no flow of information from x1 to x2 or x3,

we conclude, from theorem (21) that the system is not structurally controllable from x1. Similarly,

the system is not structurally observable from x2 or x3 [theorem (22)].
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CHAPTER 6. EXAMPLES AND APPLICATIONS

In this chapter, we look at two different applications of our proposed formalism of information

transfer. One application is in power systems, where we study the contribution of individual generators

to the inter-area oscillation modes of the power system. In the other example, we use the information

transfer to characterize the influential nodes in a Twitter network. In the third example, we use the

developed framework to find the optimal location of actuators in a double gyre fluid flow vector field.

6.1 Application to social network

Given a network, it is natural to ask which are the important nodes in the graph. For example,

a social network plays a fundamental role as a medium for the spread of information, ideas, and

influence among its members. An idea or innovation will appear and it can either die out quickly

or make significant inroads into the population. If the idea spreads significantly in the network, it

is natural to think that the idea originated in some influential node in the graph, whereas, if the idea

dies down quickly, then one may think that the node of origin of the idea is not that influential in the

network. In the context of social networks, one natural question is to determine links weight between

two nodes that take into account the influence the two nodes exhibit on one another. We propose the

use of the information transfer between the two nodes for assigning the links weights.

We are particularly interested in a directed social network such as Twitter or Google plus. Let A

be the adjacency matrix consisting of {0, 1} entries corresponding to the directed social network. If

Aij = 1(0) then there is (no) directed path from node j to node i. For assigning weights on the graph,

we construct A as follows:

A = αA

where α is suitable constant to ensure |λmax(A)| < 1.
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6.1.1 Simulation

In Fig. 6.1a we show the adjacency matrix for a 200 node Twitter follower network (for the

purpose of visualization we only show part of the adjacency matrix with first 50 nodes). The data

for this matrix is obtained from https://snap.stanford.edu/data/. This adjacency matrix, after the normalization

procedure outlined above, is used to find the information transfer.

Influence
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Figure 6.1 a) Twitter adjacency matrix. b) Distribution of influential nodes. c) Clustering based on
influence in Twitter follower network.

In Fig. 6.1b, we plot the distribution of the influential nodes for the Twitter network. To obtain

the influence distribution plot we did a histogram for the row sum of the information transfer matrix.

The row sum of the information transfer matrix is the total information transfer by the node to the

rest of the network. The distribution plot shows that most of the nodes are not influential as they

are sending little or no information to the rest of the network. There are few nodes with maximum

influence on the network. The information-based influence can also be used to cluster the network

and identify influential node within each cluster. In Fig. 6.1c, we show the clusters for the Twitter

follower network obtained using spectral clustering method (38). For the 200 node Twitter network

there are eight clusters. The two of the clusters are large (marked with green and red) and then there
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are six clusters consisting of a single node. Within each cluster, one can identify the most influential

or the hub node. The most influential node within a cluster is the one which sends the maximum

amount of information to the rest of the nodes within the cluster.

6.2 Information Transfer and Optimal Placement of Actuators

In this section, we present some preliminary results on optimal placement of actuators in a fluid

flow vector field. The problem of optimal placement of actuators and sensors was studied in (39)

and there the authors used operator theoretic ideas to find the optimal locations. A Finite-dimensional

analysis was carried out using the set-oriented methods and an optimization problem was posed which

solves the optimal location problem. In this section, we will show, through simulations, that the

proposed definition of information transfer can also be used to obtain similar optimal locations of

actuators in a fluid flow system.

Given a non-linear system ẋ = f(x), the problem is to find the optimal location of actuators in

the state space for efficient control of the dynamics. For example, in building systems applications,

the objective is to determine optimal locations of actuators in the form of vents/ducts for the control

of temperature. For the control of contaminants from an oil spill in oceanographic flows, the goal is

to determine the optimal location for the release of dispersant. The distribution of temperature in the

room or the dispersant on the ocean surface is assumed to be modeled by a passive scalar density. The

passive scalar is advected by the fluid flow velocity field. Under some simplifying assumptions of neg-

ligible buoyancy and diffusion, the evolution of the passive scalar density is modeled using the linear

advection partial differential equation (PDE). In fact, the problem of control of temperature in a build-

ing system or prediction of contaminants in fluid flow is challenging because of the nonequilibrium

nature of dynamics that are involved. The fluid flow velocity fields involved in these applications are

quite complex with dynamics consisting of multiple equilibrium points, periodic orbits, limit cycles

and chaotic attractors (40; 41). Although the point-wise evolution of a particle under the influence of

the velocity field is complex, the evolution of density, modeling the ensemble behavior, is linear and

is described by the linear advection partial differential equation (PDE).

There is an extensive amount of literature on actuator and sensor placement for a linear PDE with
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(42) providing an excellent review of the results. Most of the methods for the optimization of sensors

and actuators location involve finite dimensional approximation of the infinite dimensional system.

In (43), sensor and actuator placement for diffusive and heat type partial differential equations are

discussed. The placement problem for flexible structures is studied in (44). In (45), the provided

analytical expression for the finite time controllability and observability gramain for the advection

PDE. Selection criteria for the optimal location of actuators and sensors were proposed based on the

maximization of gramians. In (39), we provided analytic expression for the infinite time controllability

and observability for the advection PDE and proposed linear programming based approach to find the

optimal locations of actuators and sensors.

We assume that the scalar density is advected by a vector field described by following differential

equation:

ẋ = f(x) (6.1)

where x ∈ X ⊂ RN is the finite dimensional spatial variable. The spaceX is assumed to be compact.

Typically N = 2, 3 in all our proposed applications. We assume that the vector field f(x) satisfy

following assumption to guarantee existence of solution on the compact space X .

Assumption 28. We assume that the vector field generated by f has compact support in X and hence

is complete in X . This guarantees the global in-time solution of the differential equation (6.1) in X

(46).

The evolution of the scalar density, ρ(x, t), is governed by the following linear advection partial

differential equation.

∂ρ(x, t)

∂t
= −∇ · (f(x)ρ(x, t)), (6.2)

where, ρ(x, t) ∈ L2(X) is the the infinite dimensional state belonging to state space L2(X). Let

Ak ⊂ X and S` ⊂ X be the locations of actuators and sensors respectively for k = 1, . . . , p and

` = 1, . . . , q. We make following assumption on the actuator and sensor sets Ak and S` respectively.

The controlled evolution of linear advection PDE (6.2) with spatially located actuators and sensors
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can be described as follows:

∂ρ(x, t)

∂t
= −∇ · (f(x)ρ(x, t)) +

p∑
k=1

χAk
(x)uk(x, t)

y`(x, t) = χS`
(x)ρ(x, t), k = 1, . . . , p, ` = 1, . . . , q (6.3)

where χAk
(x) and χS`

(x) are the indicator functions for the set Ak and S` respectively. uk(x, t) is

the control input for the kth actuator and y` is the output of the `th sensor. The control formulation

of the advection PDE in Eq. (6.3) can be motivated as follows. Consider the application of oil spill

control, where the control, in the form of dispersant, is released from multiple locations, sayAk ⊂ X ,

in the ocean. If the fluid flow field is modeled by the vector field ẋ = f(x), then the evolution of the

dispersant, ρ(x, t), is modeled by Eq. (6.3). Similarly, the controlled evolution of temperature density

in building system application will be modeled using Eq. (6.3). For building systems applications, the

control input will consist of hot/cold air released from various vent locations in the room. Similarly

for applications involving sensor placement, it is assumed that the sensor can make the measurement

of the density ρ(x, t) in the small region S` of the physical space.

In (39), we provided analytical expressions for the infinite time controllability and observability

and proposed a linear program to solve the optimal placement problem. To arrive at the optimization

problem, we discretized the state space to obtain a finite dimensional approximation of the Perron-

Frobenius operator and used it to propose an optimization problem which solves the optimal placement

problem. In order to obtain a finite-dimensional approximation of the continuous P-F operator, one

considers a finite partition of the state space X as follows :

X = {D1, D2, . . . , DL} (6.4)

such that X = ∪Li=1Di and Di ∩ Dj = φ for all i 6= j. With this partition, the finite dimensional

approximation of the P-F semi-group is a L× L matrix P such that

[P ]ij =
m(f−1(Dj) ∩Di)

m(Di)
(6.5)

where m is the Lebesgue measure. The ijth entry of the finite dimensional P matrix gives the prob-

ability of transition from cell Di to cell Dj . Hence [P ]ij = Prob(zt+1 ∈ Dj |zt ∈ Di). Moreover, if

µz =

(
µz1 µz2 · · · µzL

)
is the density of z at time t, then

µz′ = µzP (6.6)
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is the density of z at time step (t+ 1).

So far, in this thesis, we have defined the information transfer between the states of a dynamical

system. To address the problem of optimal location of actuators, we need to define the information

transfer between the cells Di and study how much information one cell transfers to the other.

Let µt =

(
µt1 µt2 · · · µtL

)
be the distribution on the state space at any time t. Then the

entropy of the distribution is given by

H(µt) = −
l∑

i=1

µti logµti (6.7)

We define the entropy of cell Di at time t as H(Di) = −µti logµti. As the system evolves from time

step t to time step t+ 1, the new distribution at time step t+ 1 is µt+1 = µtP . Hence,

µt+1
j =

L∑
i=1

µti[P ]ij . (6.8)

So the entropy transfer from cell Di to cell Dj is [TDi→Dj ]
t+1
t = −µti[P ]ij log(µti[P ]ij). Similarly,

using higher powers of P-F matrix, one can define the information transfer over multiple time steps.

For example, the information transfer from cell Di to Dj , as the system evolves from time step t to

step t + 2 is [TDi→Dj ]
t+2
t = −µti[P 2]ij log(µti[P

2]ij), where [P 2]ij is the ijth entry of P 2. So the

total information transfer over two time steps is [TDi→Dj ]
t+1
t + [TDi→Dj ]

t+1
t .

Now, the problem is to find the placement of minimum number of actuators so that one can control

the entire state space. In terms of information transfer, one needs to identify the minimum number

of cells such that there is non-zero information transfer from these cells to all the other cells. Let

e ∈ R1×L be a vector of length Lwith entries zero and one. Then one can write the optimal placement

problem as

min ||e||0

subject to eT > 0

ei ∈ {0, 1}

where T is the information transfer matrix such that [T ]ij is the information transfer from cell Di to
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cell Dj . The optimization problem is non-convex but can be convexified via the following relaxation

min ||e||1

subject to eT > 0

ei ∈ [0, 1]
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Figure 6.2 (a) Fluid flow vector field. (b)-(d) Eigenvectors corresponding to unit eigenvalue of the
P-F matrix.

With this framework, we look at the problem of optimal location of actuators in a fluid flow vector

field. The Double Gyre flow field is given by the following equation

ẋ = −π sin(πx) cos(πy), ẏ = π sin(πy) cos(πx)

where (x, y) ∈ X = [0, 2] × [0, 1]. The Double Gyre flow field is used as a toy model for oceano-

graphic flow field (47). The vector field of the double-gyre fluid flow is shown in fig. 6.2(a). We

discretize the state space into 50 × 50 cells and the corresponding finite-dimensional P-F matrix has
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Figure 6.3 (a) Information transfer between the cells. (b) Optimal location of 200 actuators.

three eigenvalues equal to one. The corresponding eigenvectors give the invariant sets in the state

space and this is shown in fig. 6.2(b)-(d).

In fig 6.2(a) we show the information transfer between the first 50 cells and in fig. 6.2(b) the

location of 200 actuators is shown. We find that most of the actuators are located around the center

and this is consistent with the results obtained in (39). One difference is that in this simulation, we

use the total information transferred over 500 time steps to find the optimal location, whereas in (39)

we had used an infinite series of the powers of P-F matrix to compute the optimal locations. In future,

we hope to have a more rigourous connection between the information transfer framework and the

optimal placement problem.
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CHAPTER 7. INFLUENCE CHARACTERIZATION IN POWER SYSTEMS

7.1 Introduction

The power system is one of the largest man-made systems and has played a pivotal role in the

development of human society in the past century. Control and maintenance of power system is a

challenging task, where different components are connected in a complicated network and one of the

primary challenges is to maintain the stability of power system. Being a large network with compli-

cated topology, it is very difficult to identify sources of instability, hence an a priori knowledge of the

sources of instability will allow one to take appropriate control actions at those sources and thus main-

tain stability. Again, there are many types of instability associated with the power system, namely,

voltage instability, rotor angle instability and frequency instability (48). It is of great importance to

know the type and cause of instability which is leading to system collapse. In particular, if one can

identify the generator or states of the generator which is at the root of instability, then proper control

and planning action can be taken in time to prevent any failures in the system.

Power system stability problem can be addressed at two different time scales, as long term and

short term stability. For long term stability, load increase, change in network topology, slow acting

equipment such as tap changing transformer, generator current limiter are considered; whereas, short

term stability deals with transient phenomena such as an occurrence of a fault, stalling of an induction

motor and rotor angle instability. Long term stability analysis is mostly model based and interested

readers can look in (49; 50; 51) and the references therein. Study of short term voltage stability is still

in nascent phase. Various dynamic models for power system have been developed for time domain

analysis of the transient behavior of the system (52; 53; 54). Recent development also incorporates

model free approach, where data based analysis of short term stability are studied (55).

Here, we work on the problem of stability characterization in power system. In particular, we use
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the newly developed notion of information transfer to characterize which generators and also which

dynamic state(s) of the generators are contributing most towards system instability and oscillations.

We analyze the IEEE 9 bus network to show that the information transfer from generators and states

of the generators to the most unstable mode (or critical mode) and most complex mode identifies

the sources of instability. We also model the load and identify the generator which has maximum

influence on the load.

7.2 Stability Issues in Power Systems

Power system stability is an area of interest both for academic research and industrial innovation.

As defined in (48), power system stability is the ability of a system to regain operating equilibrium

after being subjected to any physical disturbance. In a primitive setup, power systems were operated

with conservative margins so as to keep the system well within stability limits. Advancement of

measurement and protection technologies has enabled stressed operation of the power system and the

modern grid is operated close to voltage instability. Thus we are able to economically transfer more

power with existing infrastructure. In such a setup, it has become more crucial to understand the

nature and cause of instability and the behavior of overall dynamics of the system. Various models,

theories and simulation tools have been developed to understand the nature of instabilities. These

simulation tools enable us to capture a variety of scenarios and the behavior of the system, which

helps in characterizing the system at a macro level. However, detailed study of system dynamics and

participation of different components of a power system in overall stability is not included in these

studies.

For stability studies, it is essential to understand both the type of instabilities arising in the system

and also how different machines/component and their dynamics are contributing to those instabilities.

For instance, at the macro level, a voltage instability may arise in one area due to rotor angle

instability in another area. Hence, it is crucial, to understand the evolution of system and instabilities

for timely control and planning actions. In (56), the authors study the mechanism of voltage instability,

where they discuss how different areas and components contribute towards instability and the study

was based on the concept of participation factor (28; 57).
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In conventional power system operation, any change in load or any physical disturbance trigger

change in generator operating point. Thus it is essential to take into account generator dynamics and

their contribution leading to system instability. In this study, we explore dynamic behavior of the

system at different operating conditions. The objective is to understand the nature of instabilities that

can arise in the system and then characterize the contribution of different components towards it. In

our study, we further analyze the contribution of specific generator states, namely exciter voltage,

rotor angle etc. to particular instabilities evolving in the system. This study will help us to develop

a theoretical framework for mapping different instabilities to the different physical parameters of the

system.

7.3 Modelling of a Power Network

A power system is a complicated network with different components, with the most important be-

ing the generators, transformers, transmission lines, substations, distribution lines, distribution trans-

formers and loads. All these components make a power system a highly nonlinear system and thus a

complicated system to analyze from the theoretical point of view. So, a common approach to the anal-

ysis of a power system is to linearize the system along its trajectories. Here we will consider dynamics

of a generator and its local control, along with load dynamics considered as aggregate induction motor

load.

7.3.1 Generator Model

The model used in this work is based on the modeling described in (58). The power network is

described by a set of differential algebraic equations (DAE) and the power system dynamics is divided

into three parts: differential equation model describing the generator and load dynamics, algebraic

equations at the stator of the generator and algebraic equations describing the network power flow. We

consider a power system model with ng generator buses and nl load buses. The generator dynamics

at each generator bus can be represented as a 4th order dynamical model:
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dδi
dt

= ωi − ωs

dωi
dt

=
Tmi

Mi
−
E′qiIqi
Mi

−
(Xqi −X ′di)

Mi
IdiIqi −

Di(ωi − ωs)
Mi

dE′qi
dt

= −
E′qi
T ′doi

−
(Xdi −X ′di)

T ′doi
Idi +

Efdi
T ′doi

dEfdi
dt

= −
Efdi
TAi

+
KAi

TAi

(Vref i − Vi)

(7.1)

The algebraic equations at the stator of the generator are:

Vi sin(δi − θi) +RsiIdi −XqiIqi = 0

E′qi − Vi cos(δi − θi)−RsiIqi −X ′diIdi = 0

for i = 1, . . . , ng.

(7.2)

The network equations corresponding to the real and reactive power at generator and load buses are

shown below.

IdiVi sin(δi − θi) + IqiVi cos(δi − θi) + PLi(Vi)

−
n̄∑
k=1

ViVkYik cos(θi − θk − αik) = 0

IdiVi cos(δi − θi)− IqiVi sin(δi − θi) +QLi(Vi)

−
n̄∑
k=1

ViVkYik sin(θi − θk − αik) = 0

for i = 1, . . . , ng.

PLi(Vi)−
n̄∑
k=1

ViVkYik cos(θi − θk − αik) = 0

QLi(Vi)−
n̄∑
k=1

ViVkYik sin(θi − θk − αik) = 0

for i = ng + 1, . . . , ng + nl.

(7.3)

Here δi, ωi, Eqi , and Efdi are the dynamic states of the generator and correspond to the generator

rotor angle, the angular velocity of the rotor, the quadrature-axis induced emf and the emf of fast
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acting exciter connected to the generator respectively. The algebraic states Idi and Iqi are the direct-

axis and quadrature-axis currents induced in the generator respectively. Each bus voltage and its

angle are denoted by Vi and θi. The parameters Tmi , Vref i , ωs,Mi, and Di are the mechanical input

and machine parameters applied to the generator shaft, reference voltage, rated synchronous speed,

generator inertia, and internal damping. The stator internal resistance is denoted by Rsi and Xqi , Xdi ,

X ′di are the quadrature-axis salient reactance, direct-axis salient reactance and direct-axis transient

reactance. The exciter gain and time-constant are given by KAi and TAi .

A power system stabilizer (PSS), that acts as a local controller to the generator is designed based

on the linearized DAEs. The input to the PSS controller is ωi(t) and PSS output, Vref i(t), is fed to

the fast acting exciter of the generator. An IEEE Type-I PSS is considered here which consists of a

wash-out filter and two phase-lead filters. The transfer function of PSS is given by

∆Vref i(s)

∆ωi(s)
= kpss

(1 + sTnum)2

(1 + sTden)2

sTw
1 + sTw

(7.4)

where kpss is the PSS gain, Tw is the time constant of wash-out filter and Tnum, Tden are time constants

of phase-lead filter with Tnum > Tden.

Elimination of the algebraic variables by Kron reduction generates a reduced order dynamic model

given by ∆ẋg = Agg∆xg + E1∆ũ where ∆xg ∈ R7ng and ∆ũ ∈ Rng .

7.3.2 Load Model

In this subsection, we discuss the load model for the power network and derive a dynamic linear

model with both the generator and load dynamics. For adding dynamics at load buses, we consider an

aggregate induction motor load representing distributed smaller loads (59). Third order dynamics are

considered for representing induction motor, with quadrature axis Thevenin voltage (e′qi), direct axis

Thevenin voltage (e′di) and angular speed of rotor (ωi) being the dynamic state variables. With these,

the dynamic equations are
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T ′0i
de′qi
dt

= −T ′0i(ωi − ω0i)e
′
di
− e′qi − (Lsi − L′i)idi

T ′0i
de′di
dt

= −T ′0i(ωi − ω0i)e
′
qi − e

′
di

+ (Lsi − L′i)iqi

ωi

(
2Hi

ω0i

)
dωi
dt

= (e′qiiqi + e′diidi)− Tnomi

(
ωi
ω0i

)D
i

for i = ng + 1, . . . , ng + nl

(7.5)

where T ′0i is the transient rotor time constant, Tnomi is the nominal value of mechanical torque, ω0i

is the synchronous speed of the induction motor, Lsi is the synchronous inductance, L′i is the motor

transient inductance, Hi is the inertia constant and Di is the load model exponent.

The algebraic equations for the induction motor are

e′di − je
′
qi + (Rai + jL′i)(idi + jiqi)

= Vi cos θi + jVi sin θifor i = ng + 1, . . . , ng + nl

(7.6)

where Rai is the stator winding resistance. From equation (7.6), iqi and idi can be expressed in terms

of Vi and θi and substituting these expressions of iqi and idi in (7.5), the dynamic equations can be

written in the standard linear system form. Again, the load voltages can be expressed in terms of

the generator voltages (58) and using the network flow equations (7.3) one obtains the coupled linear

model of the generator and load as

∆ẋg

∆ẋl

 =

Agg 0

Alg All


∆xg

∆xl

+

E1

0

∆ũ (7.7)

where ∆xl ∈ R3nl .

7.4 Influence Characterization in IEEE 9 Bus System

As discussed earlier, identification of sources of instability in power network is an important prob-

lem because knowledge of the sources of instability would allow implementation of correct corrective

measures at the proper nodes of the power network and thus enable better control of power system.
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In this section, we describe our approach to identify the states and the generators which are most

responsible for instability in a power network. The idea is based on the newly developed notion of

information transfer(60), (61). In particular, we use the notion of information transfer to define influ-

ence in a dynamical system and analyze how each state (or generator) influences the instability of a

power system.

In this work, we analyze how individual states (or generators) in a power network influence the

stability of the power network.

G1 G3

G2

T1 T3

T2

1

2

34

5

8

6

79

Load 5

Load 7Load 9

Figure 7.1 IEEE 9 bus network

In particular, we identify the generator or set of generators which are most likely to cause instabil-

ity and oscillations in the IEEE 9 bus system with dynamic load at bus 5 (fig. 7.1), and also identify

the generator or set of generators, where one needs to take action to account for load changes. This

allows us to identify which generator is participating most in causing instability and which generator

can cause the most changes on the load side. As of now, some, and not all, of these questions were

answered in terms of participation factors (28) (57). The concept of participation factor is based on

the computation of left and right eigenvectors and is not mathematically rigorous. Moreover, it cannot
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account for the influence of one state on another state in a system. But our concept of information

transfer is much more rigorous (60; 22) and is applicable to a wide variety of applications. In par-

ticular, it can not only quantify the influence of states of a system on a particular mode but also can

characterize how each state (or subspace) can influence any other state (or subspace). Another advan-

tage of the information transfer measure over participation factor is the fact that this can be applied

to nonlinear systems as well. Moreover, the developed notion of information transfer is also related

to classical concepts of structural controllability and observability (60) and these connections can be

used to locate the nodes where actuation or sensing can be performed.

In this work, we compare the results obtained using our developed framework of information

transfer with the existing concept of participation factor and demonstrate what new information our

approach provides.

We use a seventh order model for each of the three generators and a third order model for the

load. For load dynamics, we considered induction motor load at bus 5 with constant power factor.

This results in a 24th order continuous time linear model for the power network. For computation

of information transfer, we discretized the continuous time system with discretization step δt = 1

second.
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Figure 7.2 P-V curve with operating points
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In order to study the behavior of the system in different operating conditions, power flow solution

was obtained at different operating points with variation in load (MW) at bus 5, as represented in Fig.

7.2. Load at bus 5 is assumed to be an induction motor load with constant power factor. G2 and

G3 contribute towards this increase in load proportional to their machine inertia and G1 connected

at slack bus supply the remaining power to balance the power flow. As a base case, the system

operates with Pload = 90MW at bus 5. As we increase the loading, the system finally collapses after

Pload = 364.1MW. Here voltage collapse is observed due to stress on the power system. 19 different

operating points are considered ( Fig. 7.2) for different loading conditions between the base case and

voltage collapse point and at each operating point a steady state solution is obtained using Newton-

Raphson power flow solution. At each operating point, these solutions are used to obtain the 24th

order continuous time linear model.

7.4.1 Contribution to most unstable mode

We study the contribution of each generator and individual states of each generator to instability

at different operating points along the PV curve.
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Figure 7.3 Information transfer from generators 1 and 3 to most unstable mode for (a) Pload = 90

MW. (b) Pload = 364.1 MW.

The most unstable mode is the eigenvector corresponding to the eigenvalue closest to the imagi-

nary axis for the continuous time system and for a discrete time system, it corresponds to the eigen-
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value closest to the unit circle. We look at the information transfers from generators 1 and 3 to this

most unstable mode. In Fig. 7.3(a) we show the information transfer from the two generators to the

most unstable mode when the load is Pload = 90 MW. We find that G1 is transferring more infor-

mation to the most unstable mode and hence conclude that at this operating point, G1 is contributing

most to the instability of the system. This is in agreement with the participation factor, as indicated in

Table 7.1. In Fig. 7.3(b) the information transfer from the same generators to the most unstable mode

is shown for the case when Pload = 364.1 MW. It is observed that near the nose point, that is, voltage

collapse, the contribution of G3 towards instability is more than the contribution of G1.

Table 7.1 Participation to most unstable mode

Gen.\Op. Pt. 1 19

G1 0.606 0.0014

G3 0.394 0.9984

This is again, in accordance with the participation factor analysis, as depicted in Table 7.1. We do

not plot the information transfer from G2 as the information transfer and participation factor for G2

remains negligibly small compared to G1 and G3 throughout the PV curve. This is a valid outcome

as the system is getting stressed at bus 5 due to increase in load which is in turn fed mostly by G1 and

G3 as shown in Fig. 7.1 in the network topology. From Fig. 7.3(a) and (b), we find that near the nose

point G3 contributes more towards instability when compared to G1, whereas, near initial operating

points, contribution of G1 is more. So there is some operating point in between, where G3 becomes

more influential than G1.

In Fig. 7.4(a) we plot the steady state information transfer from G1 and G3 to the most unstable

mode, as we move along the PV curve. We find that in the initial stages G1 is contributing more

towards instability than G3. However, as we move along the PV curve towards the nose point, G1’s

contribution decreases and when the load is around 270 MW, the influence of G3 becomes more than

that of G1. In Fig. 7.4(b), we plot the participation factors of G1 and G3 to the most unstable mode.

Here also, initially G1 is participating more than G3 and from around 270 MW G3 starts participating

more than G1. So the switch of influence is also indicated correctly by our information transfer

measure.
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Figure 7.4 (a) Steady state information transfer to most unstable mode from G1 and G3 along
operating points. (b) Participation factors of G1 and G3 to most unstable mode along
operating points.

From the above simulations, we found that in the initial loading condition on the PV curve, G1

contributes more to the voltage instability than G3. So next, we look at individual states of G1 and

identify which state of G1 is most responsible for instability. Fig. 7.5(a) shows the information

transfer from the four states of generator 1 to the most unstable mode when Pload = 90 MW.

We find that the emf of the fast acting exciter (Efd) is most responsible for instability. This is

physically consistent because due to the increase in load(MW ), the system is approaching voltage

collapse (voltage instability) and in a synchronous generator, exciter emf is responsible for mainte-

nance of bus voltage in operating range. Similarly, for the operating point where Pload = 364.1 MW,

we again find that Efd of G3 contributes most to instability. This is shown in Fig. 7.5(b).

Fig. 7.6 shows the steady state information transfer from the exciter emf of G1 and G3 to the

most unstable mode. We find that in the initial part of the PV curve, Efd of G1 participates more

to instability than Efd of G3 and from around Pload = 270 MW, the Efd of G3 contributes more to

instability than that of G1. This is in exact accordance with the fact that from around Pload = 270

MW, G3 starts contributing more towards voltage instability than G1.
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Figure 7.5 (a) Information transfer from individual states of G1 to most unstable mode for
Pload = 90 MW. (b) Information transfer from individual states of G3 to most unstable
mode when Pload = 364.1 MW.
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Figure 7.6 Steady state information transfer from Efd of G1 and G3 to most unstable mode along
operating points.
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7.4.2 Information transfer to the complex modes

From linear system theory, we know that the eigenvalues with non-zero imaginary parts are re-

sponsible for oscillations of a linear system. In this subsection, we identify the states of the generators

in the power network which are responsible for oscillations in the network. We only present the sim-

ulation results for generator 3 at operating points 1 and 19 and similar conclusions hold for other

generators and operating points. We consider the most complex mode (eigenvalue with largest imagi-

nary part) of the system and look at how the states of the generators influence this mode.
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Figure 7.7 Information transfer from states of G3 to complex mode (a) for operating point 1. (b)
for operating point 19.

Fig. 7.7(a) shows the information transfer from the individual states of generator 3 to the most
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complex mode, for operating point 1. The discretized eigenvalue corresponding to this mode is λ =

0.8010 + 0.5003i. From the information transfer graph, it can be seen that the most information is

transferred by those states which correspond to the rotor angle(δ) and rotor angular speed(ω).

Table 7.2 Participation to most complex mode

States\Op. Pt. 1 19

δ3 0.1678 0.2107

ω3 0.1524 0.1951

E′q −0.0018 −0.0017

E′fd −0.0353 −0.0315

This is in accordance with the physical behavior and intuitions of a power system, as these are the

states which are responsible for the angular stability of the system and thus lead to short term rotor

angle instability. Similarly, for operating point 19, from fig. 7.7(b), we find that the same variables

are transferring most information to the most complex mode. In this case the most complex mode

corresponds to an eigenvalue of λ = 0.5947 + 0.7060i. In fact, the trend that the rotor angle and the

rotor angular speed is transferring most information to the most complex mode is followed through all

the operating points on the PV curve. This information is validated with participation factor analysis,

which is shown in Table 7.2. We find that at both operating points participation of generator state δ

and ω is higher as compared to other two states and this is revealed by our measure as well.

7.4.3 Information flow from generators to load

Participation factor gives the participation of a state to any mode, but it does not give any in-

formation about how a state affects another state. Our information transfer measure is more general

in this aspect and it gives a quantitative information about how a state affects another state. In this

subsection, we investigate how the individual generators contribute to the load dynamics. The load is

modeled as an induction motor and has its own dynamics. We consider a third order model for the

load with the states being the quadrature axis Thevenin voltage, direct axis Thevenin voltage and rotor

angular speed. The load is connected to the generators through the power network and in this present

set of simulations, we considered the dynamic load to be at bus 5. To analyze how each generator
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influences the load dynamics, we consider the information transfer from the individual generators to

the load.
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Figure 7.8 Information transfer from the generators to the load (a) at operating point 1. (b) at
operating point 19.

Fig. 7.8(a) and (b) shows the information transfer from the generators 1, 2 and 3 to the load at

operating points 1 and 19. It can be seen that in both the cases, it is generator 1 that transfers the

most amount of information to the load. This is due to the fact that G1 is close to load at bus 5 and

in the current modeling G1 is considered as a slack bus. So we conclude that of the three generators,

it is generator 1 that has the most influence on the load dynamics. In fact, throughout the PV curve,

we found that generator one has the most influence on the load. But from the steady state values

of the information transfer, it can be seen that as one approaches the nose point (operating point 19,

signifying instability of the power network), the information transfer, and hence influence, of the

generator 1 decreases.

In fig. 7.9, we plot the steady state values of the information transfer from generator 1 to the load

at all the 19 operating points. It can be clearly seen that the information transfer decreases as the load

is increased. One thing to be noticed is that the information transfer curve almost exactly mimics the

PV curve and even shows the dip that the PV curve has near the nose point. As to why the steady state

information transfer from G1 to the load mimics the PV curve is left for future investigations.



www.manaraa.com

81

50 100 150 200 250 300 350 400
P

Load
(MW)

0

0.2

0.4

0.6

0.8

1

1.2

V
Lo

ad
 (

p.
u.

)

0

0.2

0.4

0.6

0.8

1

1.2

I.T
.

V
5

IT
G

1
 to Load

Figure 7.9 Steady state values of information transfer from G1 to load along the operating points
(red curve) and PV curve (black curve). Here V5 is the voltage at bus 5.

7.5 Stability Characterization from State to State Information Transfer

In the previous example, stability analysis of power network was based on the information trans-

fer from state to mode. However, identification of the state variables using information transfer to the

modes or participation factor needs the computation of eigenvalues and eigenvectors which may be

computationally expensive. In this section, we provide a procedure of identifying the states responsi-

ble for instability from state to state information transfer.

Consider a linear system

x(t+ 1) = 0.7x(t) + y(t) + ξx(t)

y(t+ 1) = µy(t) + ξy(t)

(7.8)

where µ ∈ [.1, .99] and ξx(t) and ξy(t) are independent and identical Gaussian noise of unit variance.

The eigenvalues of the system are (0.7, µ) and hence as µ approaches 1, the system approaches insta-

bility. The instability occurs due to y dynamics and as µ increases, the entropy of y increases rapidly.

Hence, the information transfer from y to x also increases rapidly. This is shown in Fig. 7.10. Con-

versely, if the information transfer from some state (subspace) to any other state (subspace) increases

rapidly, it can be concluded that the system is approaching instability. The point to be noted is that

the rapid increase in the information transfer happens when the system is still operating in the stable
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Figure 7.10 Information transfer increases rapidly as the system approaches instability.

zone. Hence, one can use information transfer to predict the onset of instability and hence one can

take preventive measures before the system becomes unstable.

7.5.1 3 Bus system

Consider a power network with two generators and a load, as shown in figure 7.11(a). The load is

modelled as an induction motor in parallel with a constant PQ load. The system is modelled as a four

dimensional dynamical system with the state being generator angle (δg), generator angular velocity

(ω), the load angle (δl) and magnitude of load voltage (V ).
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Figure 7.11 (a) 3-bus system. (b) Critical points of the system

The dynamic equations for the system are

δ̇g = ω (7.9)

ω̇ = 16.66667 sin(δl − δg + 0.08727)V

−0.16667ω + 1.88074 (7.10)

δ̇l = 496.87181V 2 − 166.66667 cos(δl − δg

−0.08727)V − 666.66667 cos(δl − 0.20944)V

93.33333V + 33.33333Q1 + 43.33333 (7.11)

V̇ = −78.76384V 2 + 26.21722 cos(δl − δg

−0.01241)V + 104.86887 cos(δl − 0.13458)V

+14.52288V − 5.22876Q1 − 7.03268 (7.12)

For detailed analysis of the system equations we refer the interested reader to (62; 63).

The above power network has three critical points, namely S1, S2 and S3, as shown in figure

7.11(b). At S1 and S2, a pair of imaginary eigenvalues cross the imaginary axis and at S3, a real

eigenvalue becomes zero. Hence, the system becomes unstable at S1, remains unstable from S1 to S2,

then regains stability after S2 and again becomes unstable at S3. It is known that the instability at S1

is angle instability and the instability at S3 is voltage instability.
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7.5.2 Information Transfer and Participation Factor

Participation matrix P (64) for a linear system

ẋ = Ax (7.13)

is defined as

P = [p]ki = uikw
i
k (7.14)

where uik (wi
k) is the kth component of the ith left (right) eigenvector corresponding to eigenvalue λi

of the power system A matrix (Eq. 7.13). These eigenvector are assumed to be normalized i.e.,

u>i wj = 1, if i = j; 0 otherwise.

Participation factor pki measure the relative participation of kth state variable in the ith mode. Hence,

larger the participation factor of a state to a particular mode, larger the contribution of that state to that

mode.

For calculating the participation factors of each state of the 4-bus system (7.9)-(7.12), we look at

the linearized dynamics at the operating point Q = 1141.1 MVar. The rationale behind choosing this

operating point is the fact that ifQ is increased further, the system undergoes Saddle Node Bifurcation

(voltage instability). It is well known (63) that at SNB, it is the load voltage V that participates the

most in the most unstable mode and this is shown in table 7.3.

Table 7.3 Participation and Information Transfer to most unstable mode

State.\Index Participation Factor Information Transfer
δg 0.0137785 0.04

ω 0.00046 0.0094

δl 0.00072 −0.0189

V 0.9850 1.39884

Information transfer from the states to the most unstable mode, at this operating point, is shown

in table 7.3. For calculating the information transfer we discretized the linearized continuous-time

model with ∆t = 0.001 and calculated the steady state information transfer from the states to the

most unstable mode. It is observed that both information transfer and participation factor identify
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the load voltage as the state responsible for instability. Not only does information transfer identify

the load voltage as the state most responsible for instability, but it can be seen that the order of

participation/influence is same with both participation factor and information transfer. So far, we

see that participation factor and information transfer are doing the same thing. But one of the big

advantages of the information transfer measure is the fact that one can look at information transfer

from any combination of states to any combination of states or from any combination of state to

any output. Hence, in a system with more that two generators, one can identify which generator

is responsible for instability. For more details on the relationship between participation factor and

information transfer, we refer the interested reader to (65).

7.5.3 Stability and state to state information transfer

It is known that in the 3 bus network, there are both angle and voltage instability. In particular,

the instability that occurs at S1 (Fig. 7.11) is angle instability and the instability that occurs at S3 is

voltage instability (63).
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Figure 7.12 (a) IT from δg before S1. (b) IT from V before S3.

In Fig. 7.12(a) we show the information transfer from the angle variable of the generator to all the

other states, as the system approaches the first Hopf bifurcation. It can be seen that the information

transfer from the angle variable shows a sudden increase. This is consistent with the fact that at S1, the
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system undergoes voltage instability and it is the angle variable that causes the instability. Similarly,

as the system approaches voltage instability (S3), the information transfer from the angle variable

(V ) to all the other states shows the sudden increase. This is shown in Fig. 7.12(b). Hence one

can identify the states which are responsible for the instability of the power network. Participation

factor can also identify the same, but participation factor has some drawbacks (66) and moreover, it

requires the computation of eigenvalues and eigenvectors. But the information transfer framework

does not require the computation of eigenvalues and eigenvectors. Moreover, as discussed later, one

can do similar computation from time series data as well, which is a huge advantage of the information

transfer framework.

7.6 IEEE 39 Bus System

In this section, we consider the IEEE 39 bus system, the line diagram of which is shown in Fig.

7.13. The model used is based on the modeling described by (7.1).

Figure 7.13 IEEE 39 bus system.

The objective is to use the information transfer measure to identify the generator and the states of

the generator which are responsible for instability. For identifying the states responsible for instability,
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the concept of participation factor is generally used. But one drawback of participation factor is the

fact that it can not compute the participation of a combination of states to any particular mode (except

in some special cases). However, our formulation of information transfer is free from such issues and

one can compute the information transfer from any combination of states to any other combination

of states. As such, one can combine the states of each generator together and look at the information

transfer between the generators.

In the first set of simulations, we look at the information transfer between the generators and

identify the generator the information transfer from which shows a sudden increase, as the network

approaches instability. For simulation purpose, we linearized the system along the PV curve and used

the linearized model to compute the information transfer between the generators. The discretization

step used was 0.2 secs.

Simulation results identified generator 10 as the generator which is responsible for instability.

This is because, the information transfer from generator 10 showed a sudden rise, as the network

approached instability. Information transfer from generator 10 to generators 1 and 2 is shown in Fig.

7.14(a) and from the figure it can be clearly seen that the information transfer from generator 10 starts

to increases rapidly. For comparison, we also plot the information transfer from generators 5, 8 and

9 to generators 3, 4 and 6 respectively in Fig. 7.14(b). It can be clearly seen in Fig. 7.14(b) that

the information transfers between these generators does not change that much, thereby implying that

these generators are not responsible for instability.

Once we have identified the generator which is most responsible for instability, we zoom in to the

generator and identify the states of the generator which are responsible for instability. We consider

only the four states of the generator and not the states of the PSS. In particular, we study the informa-

tion transfer from the states of generator 10 to other generators and identify the states of generator 10

the information transfer from which to other generators show the sudden increase.

In Fig. 7.15(a) we plot the information transfer from the individual states of generator 10 to

generator 2. From the figure, it can be seen that the information transfer from the angle and the

angular speed variables show the sudden increase, whereas the other transfers remain almost same

throughout the PV curve. Hence, we conclude that it is the angle and the angular speed variables
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Figure 7.14 (a) Information transfer from generator 10 to generators 1 and 2. (b)Information trans-
fer from generators 5, 8 and 9 to generators 3, 4 and 6 respectively.
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Figure 7.15 (a) Information transfer from generator 10 to generators 1 and 2. (b)Information trans-
fer from generators 1 and 2 to generator 10.

which are most responsible for instability. This fact is also verified by participation factor analysis,

where it was found that the participation factor of the angle and angular speed of generator 10 to the

most unstable mode is 0.47 each. Hence, these variables are almost 94% responsible for instability.

For comparison, we also plot the information transfer from the states of generator 8 to generator 4 in

Fig. 7.15(b). As expected, we find that the information transfer does not change much throughout the

PV curve, and hence reaffirming the fact thath generator 8 is not responsible for instability. The same

conclusion holds for the states of the other generators as well.
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CHAPTER 8. INFORMATION TRANSFER AND PHASE TRANSITION IN

DYNAMICAL SYSTEMS

Phase transition is most commonly used to describe passage from one state like solid to another

state like liquid. However, over time, phase transition has been viewed as an order-disorder transition.

In this context, phase transitions are ubiquitous in nature and have been found in behaviour of bacteria

(67), locusts (68) and also in financial market (69). Phase transition is also quite common in complex

systems featuring ensembles of dynamically interacting components.

Characterization of phase transition has been a problem of interest and one of the major break-

throughs was achieved by Landau (70), where he connected phase transition with breaking of sym-

metry. The importance of symmetry breaking was first realized by Pierre Curie when he concluded

asymmetry is what creates a phenomenon. He also discussed what is now known as spontaneous

symmetry breaking (71). There are other types of symmetry breaking as well, like explicit symmetry

breaking (72).

Another important question, related to phase transition is the following : Is it possible to predict

if a system is moving towards phase transition? In (73) the authors used mutual information as a

measure to identify phase transitions in complex dynamical systems. They found that during phase

transition in Vicsek model (67), the mutual information reaches a peak. More recently, in 2013, in

(74), the authors showed that in a kinetic Ising model transfer entropy (26) reaches a peak in the

disordered phase, just before the disorder-order transition. However, in a dynamical system setting, it

has been shown in (60) that transfer entropy may not give the correct causal structure. In particular,

it has been shown that in a dynamical system there may be a non-zero transfer entropy from a state x

to a state y, but in reality x dynamics does not affect the y dynamics, neither directly nor indirectly.

Hence, while studying phase transitions in a dynamical system setting, it is logical to use a measure
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which gives the correct causal structure and influence characterization.

In this work, we analyze phase transitions in dynamical systems which are associated with sym-

metry breaking, with this newly developed concept of information transfer (60; 61). In particular,

we use the information transfer between the states (subspaces) of the underlying dynamical system

and show, via examples, that the information transfer can act as an indicator for symmetry breaking

phase transitions. In fact, we show that the information transfer can also predict the phase transition

in advance. In particular, we analyze phase transition in the standard double-well potential setting and

use the intuitions obtained to analyze switching of lobes in Duffing oscillator and Lorenz system. We

further show how information transfer can be used to identify phase transition in complex networks,

where phase transition can occur due to the formation of Giant Components or condensation of edges

(75).

8.1 Information Transfer and Phase Transition

The abrupt change in the behavior of a system, as a consequence of a continuous change in a

given parameter, is well-known in literature (76). In particular, as the given parameter is changed, for

some critical value of the parameter trajectories makes a sudden transition from one type of behavior

to a different type. This is known as phase transition. Another characterization of phase transition, in

terms of symmetry breaking, is due to Landau (70). He proposed that phase transition is accompanied

by breaking of symmetry. For example, consider a particle in a symmetric double-well potential, as

shown in Fig. 8.1.

When the particle is located at the local maxima at 0, it is in a state of complete symmetry.

However, any small disturbance will cause the particle to enter into one well or the other and the

initial symmetry is broken. This is a classic example of symmetry breaking and phase transition.

Consider another classic example where ice melts to form water. We consider a very simplistic

“two-dimensional” ice crystal. We assume there are six molecules of H2O in the ice crystal, which

are arranged in a perfect hexagon as shown in Fig. 8.2. We consider the symmetry group of the ice

crystal.

From basic geometry, the hexagonal crystal is symmetric w.r.t reflection about the line ` and also
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Figure 8.2 Phase transformation from ice to water.
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w.r.t. rotations by 60◦ aboutO. Let r denote the reflection about ` and s denote anti-clockwise rotation

by 60◦ about O. Then it r and s satisfy the following relations.

r2 = s6 = e (8.1)

where e is the identity operation. In addition to (8.1), to specify the symmetry group completely, one

needs to identify the relation between r and s. For this, consider

rsr−1(a) = rs(c) = r(d) = f = s−1(a) (8.2)

Hence, the symmetry group (G) for the ice lattice can be written as a group generated by r and s such

that

G = 〈r, s|r2 = s6 = e, rsr−1 = s−1〉 (8.3)

The reflection about the other lines can be generated from combination of r and s. This is in fact,

the dihedral group D6 and can be written as a semi-direct product (77) of Z2 and Z6, that is, D6 =

Z6 oφ Z2, where Z6 represent rotation, Z2 represent reflection and φ can be thought of as the relation

that connects rotation and reflection. In particular, φ is a group homomorphism from Z2 → Aut(Z6)

where Aut(Z6) is the automorphism group of Z6 and the action is defined by conjugation. That is,

φ : Z2 → Aut(Z6)

h 7→ φh

φh(n) = hnh−1

Now, as the ice melts into water, the rotational symmetry is completely broken and this breaking of

symmetry corresponds to the phase transition. In fact, water has complete rotational and translational

symmetry (hence infinite symmetry).

In the context of complex networks, phase transition can occur due to the emergence of giant

connected components and/or condensation of edges etc. (75). The emergence of giant components

or condensation of edges also lead to a breaking of initial symmetry and thus this kind of phase

transition can also be explained in terms of the symmetry groups of the network and the breaking of

its symmetry.
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In this work, we will consider phase transition which results from this breaking of symmetry and

show how information transfer between the states (subspaces) of a dynamical system can be used to

identify phase transitions.

8.2 Coupled Oscillators in Double Well Potential

Consider a dynamical system of N coupled oscillators whose equations of motion are given by

mkθ̈k = − ∂V
∂θk

(θk)− Lkθ − dθ̇k, k = 1, · · · , N (8.4)

where mk, θk and dk are the mass, angular position and damping co-efficient of the kth oscillator, V

is the potential and Lk is the kth row of the Laplacian matrix L. The potential V is assumed to be a

double well, as shown in Fig. 8.3(a). In particular, we choose V (θ) = E(Cθ4 − θ2), with E = 2 and

C = 0.5.

The phase portrait of a single oscillator, with E and C as specified before, is shown in Fig. 8.3(b).

We consider N = 2 and initialize one of the particles in the potential well at −1 and the other

in the potential well at +1. Phase transition, in this case, refers to the phenomenon when one of the

particles, due to the influence of the other particle, escapes from its well and enter the other well. We

assume the particle placed in the potential well at−1 has massm1 = 100 and the other particle placed

in the potential well at +1 has mass m2 = 10. As such, under the influence of m1, m2 may escape

from its well and enter the other well, thus resulting in phase transition. This is shown in Fig. 8.4.

Depending on the damping coefficient d, phase transition may occur once or multiple times. In all

the subsequent discussion, we assume the Laplacian L =

 1 −1

−1 1

 and consider discretized linear

model at each point on the state space for computation of information transfer. The discretization we

considered was Euler approximation with discretization step δt = 0.05. The points on the state space

were generated by solving the differential equation (8.4), with step size 0.005. We also assume that

the damping co-efficient d1 = d2 for all the simulations.

Case I: Only one phase transition

In the first set of simulations, we set d = 5 and with this damping, oscillator 2 (O2) makes only

one transition from its own potential well and settles down at the minimum of the second well. This
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Figure 8.3 (a) Double well potential. (b) Phase portrait of a single oscillator.
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Figure 8.4 Oscillator 1 (marked by red), with mass m1 = 100 remains in its well and oscillator 2
(marked by yellow) jumps from one well to the other, thus leading to phase transition.

is shown in Fig. 8.5.

The mass, and hence inertia, of oscillator 1 (O1) is much larger compared to O2 and as such,

O1 pulls O2 out of the potential well at +1, thus resulting in phase transition. In the process, the

energy of O2 increases and at one point it gains enough energy to cross the barrier. Intuitively, this

process can be thought of as O2 being unstable, w.r.t. to the well at +1, and it enters the potential

well at −1. As O2 becomes more and more unstable, its own entropy increases rapidly and reaches

a maximum near the local maxima of V at 0. As such, the information transfer to O1 also increases

rapidly and the information transfer peaks near the local maxima at 0. This is shown in Fig. 8.5 and

the result obtained is similar to the findings in (74; 73). Hence, information transfer TO2→O1 serve as

an indicator for phase transition.

Case II : Multiple phase transitions

Based on the evidence of Case I, in cases, where oscillator 2 crosses the barrier multiple times,

one should expect the information transfer to also peak multiple times. Not only that, the number of

crossings should exactly match the number of peaks of the information transfer from O2 to O1.

To simulate multiple phase transitions, we decreased the damping coefficient d to d = 0.05 and

simulated the system for sixty seconds. In these sixty seconds, O2 crossed the barrier eight times and
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Figure 8.5 θ2 and information transfer when there is only one phase transition.
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Figure 8.6 θ2 and information transfer when there are multiple phase transitions.
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the information transfer TO2→O1 also peaked eight times and the peaks coincided with the crossing of

the barrier of O2. This is shown in Fig. 8.6. Hence, this establishes the fact that information transfer

can indeed be used as an indicator for phase transition.

Case III : Almost a second transition

An interesting case is a situation when O2 crosses over to the potential well at −1 and has enough

energy to almost reach the global maxima at 0 for a second time, but does not have enough energy to

cross over to the potential well at +1. In this case we can say that a second transition almost occurred

(Fig. 8.7). It is evident that as O2 nears the maxima for the second time (when it fails to cross over),
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Figure 8.7 θ2 and information transfer when there is only one phase transition and there is almost
another transition.

its dynamics is very slow (that is, its velocity is small) and it remains near the maxima for a much

longer time. As such, its entropy also remains high for a much longer time, as compared to the case

when O2 does cross the barrier. Hence, in this case, the information transfer should also peak, but
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the difference lies in the fact that the information transfer from O2 to O1 is maintained at this peak

value for a much longer time, and hence instead of a sharp peak, one should expect a plateau kind

of a trajectory. In Fig. 8.7, we plot the information transfer TO2→O1 and find that this is indeed the

case and hence, in this case also information transfer spills out the information that there was almost

a second phase transition.

8.3 Duffing Oscillator

A duffing oscillator is a second order nonlinear dynamical system which is used to model a class

of damped and forced oscillations. The dynamic equation of double-well Duffing oscillator is

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt) (8.5)

where x(t) is the position variable and δ, α, β, γ and ω are constants. Depending on these parameters,

the Duffing oscillator can exhibit chaotic behaviour (78; 79). The equation (8.5) can be written in

state space form as 
ẋ

ẏ

ψ̇

 =


y

−δy − αx− βx3 + γ cosψ

ω

 (8.6)

with ψ(0) = 0.

We considered δ = 0.2, α = −1, β = 2, γ = 0.3 and ω = 1. With these values of the parameters,

the double-well Duffing oscillator exhibits chaotic behavior as shown in Fig. 8.8. The behavior of the

double-well Duffing oscillator is similar to the particle in a double-well potential, barring the chaotic

nature of motion. As such, one can talk about phase transition in a Duffing oscillator in a way similar

to the particle in a double-well potential and we say that there is a phase transition when the trajectory

shifts from the right half plane (R.H.P) to the left half plane (the other way round) in the phase space.

For studying the phase transition in the Duffing oscillator, we look at the information transfer from

x to y (Tx→y) for the system given in (8.6). In particular, we track how the information transfer Tx→y

changes, as the trajectory shifts from right half plane to the left half plane (L.H.P.) and otherwise. For

computation of information transfer, we considered discretized linear model corresponding to (8.6) at
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Figure 8.8 Phase portrait of Duffing oscillator
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Figure 8.9 Information transfer and phase transition in Duffing oscillator.
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each point on a trajectory. The discretization was Euler discretization, with δt = 0.5 and the trajectory

was obtained by solving the continuous time system (8.6). As with the example of coupled oscillators

in a double well potential, in the Duffing oscillator example too we found that the information transfer

Tx→y peaks sharply before the trajectory shifts from R.H.P. to L.H.P. or from L.H.P. to R.H.P. This

is shown in Fig. 8.9. A big difference from the coupled oscillator example which is to be noted is

the fact that in the Duffing oscillator example, the information transfer peaks before the trajectory

crosses over. The reason for this is left for future investigation. However, the takeaway point is that

information transfer can be used to predict the crossing over and hence it can be used for prediction,

though for small future times, of future of a chaotic system.

8.4 Lorenz Attractor

The Lorenz system was first proposed by Lorenz (80) in the context of weather prediction and it

was only later that it was realized that the Lorenz system possesses such rich dynamical structures

(81; 82; 83). The Lorenz system is a three dimensional nonlinear system with state space equations

given by

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

(8.7)

For certain values of the parameters and initial conditions, the Lorenz system exhibits chaotic

solutions and the Lorenz attractor is a set of chaotic solutions of (8.7). For σ = 10, ρ = 28 and

β = 8/3 the chaotic attractor is shown in Fig. 8.10.

The Lorenz attractor has two lobes, on either side of the plane y = 0 and similar to coupled

oscillators, shifting of the trajectories from one lobe to the other can be thought of as a form of phase

transition1.

The system (8.7), with parameter values set to as described, was simulated from an initial condi-

tion so that it generates the attractor and information transfer from y to x (Ty→x) was computed using

1Note that this is not phase transition in the truest sense, but analogous to coupled oscillators in a double well where the
shifting of lobes is similar to transition of one oscillator from one well to the other.
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Figure 8.10 Phase portrait of Lorenz system.

discretized linear model along the trajectory.

In the Lorenz system, it was again observed that the information transfer Ty→x peaks just before

the trajectory crosses the y = 0 plane. Hence, in this example also one can use information transfer to

predict the transition from one lobe to another. This is consistent with the findings of (74), where the

authors show that transfer entropy (26) peaks just before a phase transition in an Ising model. How-

ever, the authors have shown in (60) that in a dynamical system setting, measures of causality like

transfer entropy, directed information (11) and Granger causality (8) fail to capture the true causal

structure. Moreover, in (60; 61) the authors proposed a new definition of information transfer and

showed that the new definition of information transfer captures the true notion of causality in a dy-

namical system. These simulations establish the fact that this new definition of information transfer

(definition [6]), though inherently different from the other measures of causality, do behave similarly

to them when it comes to prediction of transitions in complex dynamical systems.
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Figure 8.11 Information transfer and multiple phase transitions in Lorenz attractor.

8.5 Complex Networks

Complex networks are ubiquitous in nature, ranging from world wide web, social network (75;

84), to metabolic pathways of many organisms (85) etc. and phase transitions in such complex net-

works can be of different types like the emergence of giant connected components and condensation

of edges. For example, consider a Erdos-Reyni network (86), with average degree d(G). When

d(G) < 1 there are a large number of isolated components and as d(G)→ 1, more and more isolated

components start to merge together. Finally, when d(G) > 1, there is a single connected component,

called the giant component. This phase transition, where a giant component is formed, is known as

percolation (75).

In this preliminary study, we discuss the phase transition originating from the condensation of

edges in simple graphs and demonstrate how the information transfer measure can identify the phase

transitions.
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Consider a linear dynamical system

x(t+ 1) =



0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 0 0 1

1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0


x(t) + σξ(t) (8.8)

where x(t) ∈ R6, σ > 0 is a small positive constant and ξ(t) is independent and identical Gaussian

noise of unit variance. The above dynamical system can be represented by a graph, as shown in Fig.

8.12.

1 2

3

13 2

123

4 5

6

4 5

4 5

6

6

P1

P2

Figure 8.12 Phase transitions in a 6 node network.

The adjacency matrix of this graph is same as the system matrix. Note that, for a directed graph,

the system matrix is the transpose of the adjacency matrix. We consider two phase transitions. The

first transition (P1) occurs, when the nodes 1 and 3 merge together to form the node 13 and the second

transition (P2) occurs when the node 13 and 2 merge together to form a single node (node 123). The

phase transitions are shown in Fig. 8.12.
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Figure 8.13 Information transfer in the 6 node network.

For simulating the phase transition, we simulated the original system for 200 seconds and after

that nodes, 1 and 3 merged so that the first phase transition (P1) occurs. We consider the information

transfer to the nodes which do not collapse (in this case nodes 4, 5 and 6) from the rest of the nodes.

We find that at 200th second, the information transfer shows a sudden jump and not only that, it

settles to a different value as well. Similar observations can be made when P2 occurs. The jumps

in the information transfer identify the phase transitions in the network and thus information transfer

acts as an indicator for phase transition.

We discuss a second example, an exponential graph (86; 87; 88) of 20 nodes and consider two

phase transitions as shown in Fig. 8.14.

In this case, the nodes 6 and 16 (marked by red in Fig. 8.14) collapse and become one single node

during the first phase transition and during the second transition nodes 5 and 13 (marked by green in

Fig. 8.14) collapse and become one single node. The first transition happens after the original system

evolves for 200 seconds and the second transition happens after 400 seconds.

The networks that result from the phase transitions is shown in Fig. 8.15(a) and information

transfer from the collapsed nodes to the rest of the network is plotted in Fig. 8.15(b). The information

transfer again shows sudden jumps, identifying the phase transitions.

In these two examples, we considered the case of phase transition which results from the collapse

of edges. We believe that exactly similar trends will be observed for the phase transition due to



www.manaraa.com

107

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19
20

Figure 8.14 Exponential network of 20 nodes.

percolation. Analysis of percolation in terms of information transfer is left for future investigations as

is the problem of working with real-life examples.
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Figure 8.15 (a) Phase transitions in the exponential network. (b) Information transfer in the 20
node network.
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CHAPTER 9. CAUSAL INFERENCE FROM TIME SERIES DATA

So far, the formulation of information transfer was based on the assumption that one knows the

underlying model of the dynamical system. However, in real life, in many different scenarios, one

does not have access to the underlying mathematical model, but instead have the time series data from

a dynamical system. In this chapter, we discuss the method of computation of one step information

transfer from time series data. We assume that we can measure all the states of the system and

use provide two algorithms for computing the one step information transfer. In particular, first we

describe an algorithm which can be used on data coming from linear dynamical system, and later we

describe an algorithm for computing information transfer for any general dynamical system, linear or

non-linear.

9.1 Transfer operators for stochastic system

Consider a discrete time random dynamical system of the form

xt+1 = T (xt, ξt) (9.1)

where T : X ×W → X with X ⊂ RN is assumed to be invertible with respect to x for each fixed

value of ξ and smooth diffeomorphism. ξt ∈ W is assumed to be independent identically distributed

(i.i.d) random variable drawn from probability distribution ϑ i.e.,

Prob(ξt ∈ B) = ϑ(B)

for every set B ⊂ W and all t. Furthermore, we denote by B(X) the Borel-σ algebra on X and

M(X) the vector space of bounded complex-valued measure onX . Associated with this discrete time

dynamical system are two linear operators namely Koopman and Perron-Frobenius (P-F) operator.

These two operators are defined as follows.
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Definition 29 (Perron-Frobenius Operator). P :M(X)→M(X) is given by

[Pµ](A) =

∫
X

∫
W
χA(T (x, v))dϑ(v)dµ(x) =

∫
X p(x,A)dµ(x) (9.2)

where χA(x) is the indicator function for set A and p(x,A) is the transition probability function.

For deterministic dynamical system p(x,A) = δT (x)(A). Under the assumption that p(x, ·) is

absolutely continuous with respect to Lebesgue measure, m, we can write

p(x,A) =

∫
A
k(x, y)dm(y)

for allA ⊂ X . Under this absolutely continuous assumption, the P-F operator on the space of densities

L1(X) can be written as 1

[Pg](y) =

∫
X
k(x, y)g(x)dm(x)

Definition 30 (Invariant measures). Invariant measures are the fixed points of the P-F operator P that

are additionally probability measures. Let µ̄ be the invariant measure then, µ̄ satisfies

Pµ̄ = µ̄

Under the assumption that the state space X is compact, it is known that the P-F operator admits

at least one invariant measure.

Definition 31 (Koopman Operator). Given any h ∈ F , U : F → F is defined by

[Uh](x) = Eξ[h(T (x, ξ))] =

∫
W
h(T (x, v))dϑ(v)

Properties 32. Following properties for the Koopman and Perron-Frobenius operators can be stated.

a). For any function h ∈ F such that h ≥ 0, we have [Uh](x) ≥ 0 and hence Koopman is a positive

operator.

1with some abuse of notation we are using the same notation for the P-F operator defined on the space of measure and
densities.
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d). If we define P-F operator act on the space of densities i.e., L1(X) and Koopman operator on

space of L∞(X) functions, then it can be shown that the P-F and Koopman operators are dual

to each others as follows

〈Uf, g〉 = 〈f,Pg〉

where f ∈ L∞(X) and g ∈ L1(X).

e). For g(x) ≥ 0, [Pg](x) ≥ 0.

f). Let (X,B, µ) be the measure space where µ is a positive but not necessarily the invariant

measure, then the P-F operator satisfies following property.∫
X

[Pg](x)dµ(x) =

∫
X
g(x)dµ(x)

9.2 Robust approximation of P-F and Koopman operators

In this section, we derive the robust version of Extended Dynamic Mode Decomposition. Results

for the robust implementation of DMD, Kernel EDMD and NSDMD will follow exactly along similar

lines. Consider snapshots of data set obtained from simulating a discrete time random dynamical

system x→ T (x, ξ) or from an experiment

X = [x0, x2, . . . , xM ] (9.3)

where xi ∈ X ⊂ Rn. The data-set {xk} can be viewed as sample path trajectory generated by random

dynamical system and could be corrupted by either process or measurement noise or both. A large

number of sample path trajectories need to be simulated to realize sufficient statistics of the random

dynamical system. However, in practice, only few sample path trajectories over finite time horizon

are available, and it is hard to approximate the statistics of RDS using the limited amount of data-set.

Furthermore, rarely one knows the probability distribution of the underlying noise process, i.e., ϑ.

Estimating ϑ is in itself a challenging problem. In spite of these difficulties, it is essential to develop

an algorithm for the approximation of transfer operators that explicitly account for the uncertainty in



www.manaraa.com

112

data-set. We propose a robust optimization-based approach to address this challenge. In particular,

we consider deterministic, but norm bounded uncertainty in the data set. Since the trajectory {xk}

is one particular realization of the RDS, the other random realization can be assumed to be obtained

by perturbing {xk}. We assume that the data points xk are perturbed by norm bounded deterministic

perturbation of the form

δxk = xk + δ, δ ∈ ∆.

Several possible choices for the uncertainty set ∆ can be considered. For example

∆ := {δ ∈ Rn : ‖ δ ‖2≤ ρ} (9.4)

restrict the 2-norm of δ to ρ. Another possible choice could be

∆ := {δ ∈ Rn : ‖ δ ‖Qi≤ 1, i = 1, . . . , d} (9.5)

where Qi ≥ 0 and implies that uncertainty δ lies at the intersection of ellipsoids. More generally, one

can also consider ∆ set to be of the form

∆ = {δ ∈ Rn : hi(δ) ≤ 0, i = 1, . . . , d} (9.6)

for some convex function hi(δ). These different choices for the uncertainty set ∆ allow us to encap-

sulate the information about the uncertainty δ. For example, if the vector random variable in R2 is

uniformly distributed with support in interval [−d, d]× [−d, d], then the uncertainty set ∆ can be writ-

ten as intersection of two ellipsoids E1 = {(x, y)|x2
a2

+ y2

b2
≤ 1} and E2 = {(x, y)|x2

b2
+ y2

a2
≤ 1} where

a >> d and 1/a2+1/b2 = 1/d2(Fig. 9.1(a)). For example, let d = 0.5. Then [−0.5, 0.5]×[−0.5, 0.5]

can be expressed as the intersection of the two ellipsoids E1 and E2, with a = 50 and b = 0.4996, as

shown in figure 9.1(b).

Now let D = {ψ1, ψ2, . . . , ψK} be the set of dictionary functions or observables. The dictionary

functions are assumed to belong to ψi ∈ L2(X,B, µ) = G, where µ is some positive measure,

not necessarily the invariant measure of T . Let GD denote the span of D such that GD ⊂ G. The

choice of dictionary functions are very crucial and it should be rich enough to approximate the leading

eigenfunctions of Koopman operator. Define vector valued function Ψ : X → CK as

Ψ(x) :=

[
ψ1(x) ψ2(x) · · · ψK(x)

]
(9.7)
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Figure 9.1 (a) Uncertainty set as intersection of two ellipsoids. (b) Representation of the uncer-
tainty set ∆ = [−0.5, 0.5]× [−0.5, 0.5].

In this application, Ψ is the mapping from physical space to feature space. Any function φ, φ̂ ∈ GD

can be written as

φ =
K∑
k=1

akψk = Ψa, φ̂ =
K∑
k=1

âkψk = Ψâ (9.8)

for some set of coefficients a, â ∈ CK . Let

φ̂(x) = [Uφ](x) + r = Eξ[φ(T (x, ξ))] + r. (9.9)

Unlike deterministic case where we evaluate (9.9) at the data point {xk}, for the uncertain case we do

not have sufficient data points to evaluate the expected value in the above expression. Instead we use

the fact that different realizations of the RDS will consist of the form {xk + δ} with δ ∈ ∆ to write

(9.9) as follows:

φ̂(xm + δxm) = φ(xm+1) + r, k = 1, . . . ,M − 1. (9.10)

The objective is to minimize the residual for not just one pair of data points {xm, xm+1}, but over all

possible pairs of data points of the form {xm + δ, xm+1}. Using (9.8) we write the above as follows:

Ψ(xk + δxk)â = Ψ(xk+1)a + r.

We seek to find matrix K, the finite dimensional approximation of Koopman operator that maps

coefficient vector a to â, i.e., Ka = â, while minimizing the residual term, r. Premultiplying by
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Ψ>(xm) on both the sides of above expression and summing over m we obtain[
1

M

∑
m

Ψ>(xm)Ψ(xm + δxm)K−Ψ>(xm)Ψ(xm+1)

]
a.

In the absence of the uncertainty the objective is to minimize the appropriate norm of the quantity

inside the bracket over all possible choices of matrix K. However, for robust approximation, presence

of uncertainty acts as an adversary whose goal is to maximize the residual term. Hence the robust

optimization problem can be formulated as a min−max optimization problem as follows.

min
K

max
δ∈∆
‖ GδK−A ‖F=: min

K
max
δ∈∆
F(K,Gδ,A) (9.11)

where

Gδ =
1

M

M∑
m=1

Ψ(xm)>Ψ(xm + δxm)

A =
1

M

M∑
m=1

Ψ(xm)>Ψ(xm+1), (9.12)

with K,Gδ,A ∈ CK×K . The min−max optimization problem (9.11) is in general nonconvex and

will depend on the choice of dictionary functions. This is true because F in (9.11) is not in general

concave function of δ for fixed K. Hence, we convexify the problem as follows

min
K

max
δG∈∆̄

‖ (G + δG)K−A ‖F (9.13)

where δG ∈ RK×K is the new perturbation term characterized by uncertainty set ∆̄ which lies in the

feature space of dictionary function and the matrix G = 1
M

∑M
m=1 Ψ(xm)>Ψ(xm). ∆̄ is the new

uncertainty set defined in the feature space and will inherit the structure from set ∆ in the data space.

In particular, following result can be used to connect the two uncertainty set, ∆ and ∆̄ when ∆ is

described as in Eq. (9.4).

Proposition 33. In the convex problem (9.13), δG is bounded as

‖ δG ‖F≤ λΛΓ (9.14)

where ‖ δxm ‖F≤ λ, ‖ Ψ(xm) ‖F≤ Λ and ‖ Ψ′(xm) ‖F≤ Γ for all m.
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Proof. From Taylor series expansion we have, Ψ(xm + δxm) = Ψ(xm) + Ψ′(xm)δxm, where

Ψ′(xm) is the first derivative of Ψ(x) at xm. Hence,

Gδ = G+
1

M

M∑
m=1

Ψ>(xm)δxmΨ′(xm)

Let δG = 1
M

∑M
m=1 Ψ>(xm)δxmΨ′(xm). Hence,

‖ δG ‖F = ‖ 1

M

M∑
m=1

Ψ>(xm)δxmΨ′(xm) ‖F

≤ 1

M

M∑
m=1

‖ Ψ>(xm)δxmΨ′(xm) ‖F

≤ 1

M

M∑
m=1

‖ Ψ>(xm) ‖F · ‖ δxm ‖F · ‖ Ψ′(xm) ‖F

≤ λΛΓ

Similar results can be used to connect the two uncertainty set ∆ and ∆̄ for the case where ∆

is described in Eqs. (9.5) and (9.6) to convert non-convex optimization problem to convex. For the

uncertainty set given in Eq. (9.5), it can be easily shown that the problem simplifies to case described

in the above proposition, where λ depends on the eigenvalues of the matrices Qi. Similarly, for the

uncertainty set given in (9.6), under the assumption that ∆ is compact, it also boils down to proposition

33.

In (89), we proposed Naturally Structured Dynamic Mode Decomposition (NSDMD) algorithm

for finite dimensional approximation of the transfer Koopman and P-F operator. Apart from preserving

positivity and Markov properties of the transfer operator, this algorithm exploits the duality between

P-F and Koopman operator to provide the approximation of P-F operator. The algorithm presented

for the robust approximation of Koopman operator can be combined with NSDMD for the robust

approximation of P-F operator. In particular, under the assumption that all the dictionary functions are

positive, following modification can be made to optimization formulation (9.13) for the approximation

of Koopman operator.
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min
K

max
δG∈∆̄

‖ (G + δG)K−A ‖F

s.t. Kij ≥ 0

[ΛKΛ−1]ij ≥ 0

ΛKΛ−11 = 1 (9.15)

where Λ = 〈Ψ(x),Ψ(x)〉 with [Λ]ij = 〈ψi, ψj〉 is symmetric positive definite matrix. We refer the

interested reader to (89) for details of NSDMD formulation. Using duality the robust approximation of

the P-F operator, P, can then be written as P = K>. Most common approach for solving the robust

optimization problem is by using a robust counterpart. In the following section we show that the

robust counterpart of the robust optimization problem can be constructed and is a convex optimization

problem.

9.2.1 Robust Optimization, Regularization, and Sparsity

The robust optimization problem (9.13) has some interesting connection with optimization prob-

lems involving regularization term. In particular, we have following Theorem.

Theorem 34. Following two optimization problems

min
K

max
δG:‖δG‖F≤λ

‖ (G + δG)K−A ‖F (9.16)

min
K
‖ GK−A ‖F +λ ‖ K ‖F (9.17)

are equivalent.

Proof. The following proof is from (90), and we outline here for the convenience of the reader. For

any δG ∈ ∆̄, such that ‖ δG ‖F≤ λ, ‖ (G + δG)K − A ‖F=‖ (GK + δGK − A) ‖F . By

triangle inequality, using the fact that ‖ δG ‖F≤ λ, we have ‖ (G + δG)K− A ‖F≤‖ GK−A ‖F

+λ ‖ K ‖F . On the other hand, given any K, we can choose a δG, such that δGK is aligned with

(GK−A) and thus the two problems are equivalent.
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The regularization term penalize the Frobenius norm of the matrix K and is also known as

Tikhonov regularization. Equivalence to the more popular `1 regularization or Lasso regularization

can also be shown if we change the structure of the uncertainty set. Note that in the above theorem

the uncertainty set ∆̄ is defined as follows:

∆̄ := {δG ∈ RK×K :‖ δG ‖≤ λ}

The equivalence between the robust optimization problem (9.13) and the `1 Lasso regularization can

be established as follows.

Theorem 35. Define

∆̄ := {δG = (δG1, . . . , δGK) ∈ RK×K :‖ δGi ‖2≤ c}.

Following two optimization problems are equivalent

min
K

max
δG∈∆̄

‖ (G + δG)K−A ‖F (9.18)

min
K
‖ GK−A ‖F +c

K∑
k=1

‖ Kk ‖1 (9.19)

where Kk is the kth column of matrix K.

Refer to (90) for the proof. It is well known that the optimization problem with the regularization

term especially the `1 Lasso type regularization induce sparsity structure on the optimal solution. The

equivalence between robust optimization and regularized optimization problem provides an alternate

point of view to the sparsity structure, i.e., robustness implies sparsity. In (91), sparse DMD algorithm

is proposed where `1 type regularization term is used to impose sparsity structure on the amplitude

terms which appear in the temporal expansion of data along dynamic modes. We expect similar robust

optimization-based viewpoint can be provided to the sparse DMD algorithm proposed in (91).

9.2.2 Design of robust predictor

While the optimization problem with the regularization term (9.17) and the robust optimization

problem (9.16) are equivalent, the robust optimization point of view to the optimization problem
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offers a particular advantage. In particular, robust optimization viewpoint provides a systematic way

of determining the regularization parameter which often is a tuning parameter. On the other hand, the

optimization formulation with the regularization term has interesting interpretation borrowed from

machine learning literature. In problems involving model fitting from data one of the fundamental

tradeoff arise between the quality of approximation and complexity of approximation function. For

example, in the absence of the regularization term, the optimization problem will find a matrix K

that best tries to fit the training data to the model. Hence, without the regularization term, there

will be a tendency to over-fit model parameters to data. Such over-fitted model will perform well

on the training data and give a smaller value of optimal cost. However, these over-fitted models

will often perform poorly on the test data-set. On the other hand, the optimization problem with the

regularization term tries to strike a balance between over fitting and prediction. This observation on

the role of regularization term has an important implication on the proposed application of transfer

operator framework for the design of data-driven predictor. For the design of predictor dynamics, we

first use training data for the approximation of the transfer Koopman operator. Let {x0, . . . , xM} be

the training data-set and K be the finite-dimensional approximation of the transfer Koopman operator

obtained using the robust algorithm (9.13). Let x̄0 be the initial condition from which we want to

predict the future. The initial condition from state space is mapped to the feature space using the same

choice of basis function used in the robust approximation of Koopman operator i.e.,

x̄0 =⇒ Ψ(x̄0)> =: z ∈ RK .

This initial condition is propagated using Koopman operator as

zn = Knz.

The predicted trajectory in the state space is then obtained as

x̄n = Czn

where matrix C is obtained as the solution of following least square problem

min
C

M∑
i=1

‖ xi − CΨ(xi) ‖22 (9.20)
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In the simulation section, we demonstrate the effectiveness of the proposed robust prediction algorithm

on linear and nonlinear systems.

9.2.3 Examples

Example 36. System of Coupled Oscillators :

We consider a network of linear coupled oscillators forced with white Gaussian noise process

θ̈k = −Lkθ − dθ̇k + σ
dξ

dt
, k = 1, · · · , N (9.21)

where θk is the angular position of the kth oscillator, N is the number of oscillators, Lk is the kth row

of the Laplacian L. The Laplacian corresponds to the star network and is given as follows:

L =



7 −1 −1 −1 −1 −1 −1 −1

−1 1 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

−1 0 0 1 0 0 0 0

−1 0 0 0 1 0 0 0

−1 0 0 0 0 1 0 0

−1 0 0 0 0 0 1 0

−1 0 0 0 0 0 0 1



.

d is the damping coefficient.

For simulation purpose, we took N = 8 and d = 0.05 and σ = 0.4. We assume that the output is

the angular position of all the oscillators and is not subjected to noise disturbance. The system was

discretized with δt = 0.01 and data was collected for 60 times steps. However, among the 60 data

points, only the first 20 data points were used as the training data for approximating the Koopman

operator, using both the proposed robust algorithm and the non-robust algorithm. Since the system is

linear, we use linear dictionary function for the approximation of Koopman operator. In Fig. (9.2)a,

we show the first few dominant eigenvalues obtained using the original DMD algorithm, i.e., DMD

algorithm applied to data-set without noise (clean data-set), proposed robust DMD algorithm, and

regular DMD applied to noisy data-set. The regularization parameter for robust DMD algorithm was

chosen to be 0.4. From Fig. (9.2)a, we notice that the robust DMD does a better job in approximating

the dominant eigenvalues of the original noise-free system compared to regular DMD. Furthermore,
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the regular DMD also leads to unstable eigenvalue which is not present in the original system since

the original system has positive damping.
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Figure 9.2 (a) Dominant eigenvalue comparison when there is no measurement noise. (b) Domi-
nant eigenvalue comparison with both process and measurement noise.

The second set of simulations in Fig. (9.2)b are obtained with both measurement and process

noise. Both the measurement and process noise are assumed white with variance of 0.3. The mea-

surement data was again collected for 60 time steps, of which the first 20 were used as the training

data. Eigenvalues computed using the regular DMD are further in right half plane whereas the Koop-

man eigenvalues obtained using robust DMD are all stable and also captures the first two dominant

eigenvalues of the original system.

Example 37. Noisy rotations on a circle

We consider the example discussed in (92),(93). A dynamical system T , corresponding to rotation

on the unit circle S1 is given by

T (x) = x+ θ (9.22)

where θ ∈ S1 is a constant number. We consider a stochastic dynamical system with process noise,

so that the RDS is given by

T (x, ξ) = x+ θ + ξ (9.23)
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where ξ are independent and identically distributed random variables taking values in [−0.7, 0.7]. In

this example we considered x(0) = 1, θ = π/320. We consider the dictionary functions as

Ψ = e2πinx (9.24)

where n = −50,−49, · · · , 49, 50. Data was collected for 6000 time steps and data for the first 50

time steps was used for training purpose.
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Figure 9.3 (a) Clean data. (b) Noisy data. (c) Comparison of eigenvalues obtained with different
algorithms.

The clean data and the noisy data is shown in Fig. 9.3(a) and (b) respectively. The eigenvalues

obtained using the different algorithms is plotted in Fig. 9.3(c) and it can be seen that the robust DMD
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algorithm provides closer match for the eigenvalues of the deterministic system. Moreover, normal

DMD and subspace DMD yields unstable eigenvalues, though the original system is not unstable.

As mentioned earlier, normal DMD and subspace DMD works for RDS when the training data set

is large enough, but in reality it may not be possible to obtain such large data sets and in that case

robust DMD provides much better approximation of the Koopman operator.

Example 38. The nonlinear stochastic Stuart-Landau system :

The nonlinear stochastic Stuart-Landau system (94). The stochastic Stuart-Landau equation on a

complex function z(t) = r(t) exp(iθ(t)) is given by

ż = (µ+ iγ)z − (1 + iβ)|z|2z + σξ(t), (9.25)

where ξ(t) is a white Gaussian noise of unit variance and i is the imaginary unit. In absence of

process noise, the solution of (9.25) evolves on the limit cycle |z| = √µ. Hence, the continuous time

eigenvalues lie on the imaginary axis, if the process noise is absent. The discretized version of (9.25)

is

rt+1

θt+1

 =

rt + (µrt − r3t )δt

θt + (γ − βr2t )δt

+ σp

δt 0

0 δt/rt

 ξt. (9.26)

We assume that the observation are corrupted with noise and of the form

yt =

(
e−10iθt e−9iθt · · · e9iθt e10iθt

)
+ σowt. (9.27)

The noisy output data was used to construct the finite dimensional approximation of the operator, with

δt = 0.01. Both the process noise and measuement noise considered here are uniform with support

[−.03, 0.3] and [−0.1, 0.1] respectively. A sample trajectory is shown in Fig. 9.4.

The system was initialized at (1,−π) and data were obtained for 100 time steps and data of

the first 30 steps was used as the training data and the prediction was made over future steps. The

dictionary functions we chose are einθt , n = −10,−9, · · · , 9, 10. The eigenvalues of the approximate

robust DMD Koopman operator, normal DMD Koopman and subspace DMD operator for the initial

condition (1,−π) are shown in Fig. 9.5(a). It is observed that all the algorithms are capturing

the oscillatory nature of the underlying system, but normal DMD and subspace DMD generate a
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Figure 9.4 Sample output trajectory
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Figure 9.5 (a) Eigenvalue comparison of Robust DMD, normal DMD and subspace DMD. (b)
Dominant eigenvalues.
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Figure 9.6 (a) Eigenvalue comparison of Robust DMD, normal DMD and subspace DMD. (b)
Dominant eigenvalues.
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Koopman operator which has an eigenvalue on the right half plane implying the system to be unstable.

The first few dominant eigenvalues obtained using the three different algorithms are shown in Fig.

9.5(b).
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Figure 9.7 (a) Error in prediction in r for initial state at (1,−π). (b) Error in prediction in θ initial
state at (1,−π).

Once the Koopman operators are obtained, one can use the obtained operator to predict the future.

In Fig. 9.7(a) and (b), we compare the errors in prediction in r and θ respectively, when using robust

DMD and subspace DMD for the system starting from (1,−π). The errors are plotted around the

actual values of r and θ. For example, the error in r is plotted around the actual value of r = 1.

As mentioned earlier, the first 30 time step data was used as the training data, and the operators

obtained using the training data has been used to predict future 70 time steps. As can be seen from

Fig. 9.7(a) and (b), robust DMD algorithm yields much smaller error when compared to subspace

DMD. The error in prediction using normal DMD increases exponentially and is not shown in the

error plot. However, we find that the error using subspace DMD decreases initially and then grows

exponentially. This is because the coupling from the unstable subspace to the stable subspace is small

and hence initially the dominant stable eigenvalues make the error decrease but as the system evolves,

the effect of the unstable eigenvalue becomes more prominent and the error grows exponentially.

As mentioned earlier, compared to subspace DMD Robust DMD provides a better approximation

of systems, when the size of training data is not substantial. To illustrate this point, we used different

sizes of training dataset and used it to predict future 10 time steps. In particular, we varied the training
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data from 10 time steps to 40 time steps and looked at the average error in prediction in both r and θ

over 10 future time steps.
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Figure 9.8 (a) Average error in prediction of r. (b) Average error in prediction of θ.

In Fig. 9.8(a) we plot the average error in prediction in r. The x-axis shows the number of time

steps used for training and for each such training data set, the state r was predicted for 10 future time

steps and the average error in the prediction is plotted along the y-axis. It can be observed that for

all the different sizes of training data used, average error for Robust DMD algorithm always shows

smaller error compared to subspace DMD. Similarly, in Fig. 9.8(b), we plot the average error is

prediction of θ and observe the same.

Example 39. Stochastic Burger equation

The third example we consider in this paper is stochastic Burger’s equation

∂tu(x, t) + u∂xu = k∂2
xu+ σpe(x, t)

with k = 0.01, e(x, t) is uniform random distribution with support [−1, 1] and σp = 0.2. In the

simulation, we approximated the PDE solution using the Finite Difference method (95) with the initial

condition u(x, 0) = sin(2πx) and Dirichet boundary condition u(0, t) = u(1, t) = 0. Given the

spatial and temporal ranges, x ∈ [0, 1], t ∈ [0, 1], the discretizaion steps are chosen as ∆t = 0.02

and ∆x = 1× 10−2.
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The generated data is plotted in Fig. 9.9(a). The robust DMD algorithm, subspace DMD algo-

rithm and the regular DMD algorithm are applied to a data set collected over 100 time steps. We

assumed both process and measurement noise and each has a variance of 0.2. The eigenvalues ob-

tained using regular DMD, subspace DMD and robust DMD approach are shown in Fig. 9.9)(b) and

zoomed in plot shown in Fig. 9.9(c). As in the previous examples, we find that one of the eigenvalues

obtained using regular DMD and subspace DMD approach is unstable. Furthermore, the dominant

eigenvalues show a closer match for robust DMD compared to other methods.
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Figure 9.9 (a) Data generated by Stochastic Burger’s equation with observation noise (b) Eigen-
values of the continuous time system.(c) Zoomed in region of dominant eigenvalues
captured by the three methods.

Since the eigenvalues obtained with robust DMD algorithm shows a closer match, it is logical to

believe that prediction using the robust DMD Koopman operator will be much more efficient compared
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to either regular DMD or subspace DMD.
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Figure 9.10 (a) Error in prediction of z2. (b) Error in prediction of z50. (c) Average error in
prediction.

We used 100 time steps data as the training data and used the obtained operators to predict future

15 states. Since ∆x = 1×10−2, the discretized system has 100 states, namely,
(
z1 z2 · · · z100

)
.

In Fig. 9.10(a) and (b) we plot the errors in prediction of z2 and z50 respectively, when using robust

DMD and subspace DMD algorithms. It can be seen that the error in prediction with robust DMD is

much smaller than the error obtained with subspace DMD. In Fig. 9.10(c) we plot the average error

in all the states at each prediction time step. We do not plot the error using regular DMD because

since the Koopman operator obtained using regular DMD has an eigenvalue with a large positive real

part, it is highly unstable and the error diverges exponentially fast.

9.3 Causal Inference in Linear Dynamical System

In this section, we outline the procedure for computing the information-based causal inference

from time series data for the case of linear dynamical system. We will employ the data-driven ap-

proximation of transfer operators discussed in the previous section and also exploit the fact that the

analytical expression for information transfer in linear system are available. For ease of understanding,

we discuss the procedure of information transfer computation for a two dimensional or two subspace

case, as given by system Eq. (4.2). The general case will follow from the two subspace case.

Note that in all the subsequent discussion we assume that we have access to all the states of the

system. The problem of computing the information transfer based on output measurements could be
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more realistic problem and is a topic of our ongoing investigation. Let the time series data be given

by

D =

[x0

y0

 ,

x1

y1

 , · · · ,

xM−1

yM−1

] (9.28)

Since the data is assumed to be generated from a linear dynamical system, we use linear dictionary

functions i.e., ψk(z) = zk. Furthermore, the number of dictionary functions are taken to be equal to

the size of the system i.e., N . For the linear system case we use optimization formulation (9.19) i.e.,

EDMD with linear dictionary functions for the approximation of Koopman operator. With the linear

choice of dictionary function and number of dictionary function equal to size of the system it is not

difficult to show that the approximation of Koopman operator, K, is the system A matrix itself. Let

Ā = K ∈ RN×N be the estimated system dynamics obtained using optimization formulation (9.19).

Under the assumption that the initial covariance matrix is Σ̄(0), the propagation of the covariance

matrix under the estimated system dynamics Ā is given by

Σ̄(t) = ĀΣ̄(t− 1)Ā> + σ2I (9.29)

Both Ā and Σ̄ can be decomposed according to Eqs. (4.3) and (4.4). The conditional entropy

H(yt+1|yt) for the non-freeze case is computed using the following formula (96; 97).

H(yt+1|yt) =
1

2
log |ĀyxΣ̄S

y (t)Ā>yx +

(
λ

3

)2

I|. (9.30)

where | · | is the determinant, λ is the bound on the process noise, Σ̄S
y (t) is the Schur complement of

y in the covariance matrix Σ̄(t). In computing the entropy, we assume that the noise is i.i.d. Gaussian

with covariance Σ = diag(σ2, · · · , σ2) so that one can take the bound as λ = 3σ, to cover the essential

support of the Gaussian distribution.

Computing the conditional entropy of y when x is frozen from the time series data obtained from

the non-freeze dynamics is a challenge. To replicate the effect of x freeze dynamics we modify the

original data set (9.28) as follows.

D6x =


x0
y0

 ,

x0
y1

 ,


x1
y1

 ,

x1
y2

 , · · · ,


xM−1
yM−1

 ,

xM−1
yM


 (9.31)
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If the original data set has M data points, then the modified data set has (2M − 2) data points.

The idea is to find the best mapping that propagate points of the form [xt−1 yt−1]> to [xt−1 yt]
>

(i.e., x freeze) for t = 1, 2, . . . ,M . The estimated dynamics Ā 6x, when x is frozen, is calculated

using the optimization formulation (9.17) but this time applied to the data set (9.31). Once the frozen

model is calculated, the entropy H6x(yt+1|yt) is calculated using exactly the same procedure outline

for H(yt+1|yt) but this time applied to Ā 6x. Finally the information transfer from x→ y is computed

using the formula

Tx→y = H(yt+1|yt)−H6x(yt+1|yt)

The algorithm for computing the information transfer for the linear system case can be summa-

rized as follows:

Algorithm 1 Information Transfer: Linear System

1. From the original data set (9.28), compute the estimate of the system matrix Ā using the opti-
mization formulation (9.19)

2. Assume Σ̄(0) and compute Σ̄(t) using Eq. (9.29). Determine Āyx and Σ̄S
y to calculate the

conditional entropy H(yt+1|yt) using (9.30).

3. From the original data set (9.28) form the modified data set for the x freeze dynamics as given
by Eq. (9.31).

4. Follow steps (1)-(2) to compute the conditional entropy H 6x(yt+1|yt).

5. Compute the transfer Tx→y as Tx→y = H(yt+1|yt)−H6x(yt+1|yt).

Example 40. In the first example, we discuss the physical meaning of information transfer and demon-

strate how it can be used to characterize influence in a dynamical system. Consider a mass-spring-

damper system, as shown in Fig. 9.11.

The equations of motion for the mass-spring system are

Mẍ1 + 2dẋ1 − dẋ2 + 2kx1 − kx2 = 0 (9.32)

mẍ1 + 2dẋ2 − dẋ1 + 2kx2 − kx1 = 0 (9.33)
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Figure 9.11 Mass-spring-damper system

where M,m are the masses, d is the damping coefficient and k is the spring constant. We assume that

the damping coefficients of the dampers are equal and so are the spring constants of the springs. In

state space form, the system can be represented as



ż1

ż2

ż3

ż4


=



0 1 0 0

−2k/M −2d/M k/M d/M

0 0 0 1

k/m d/m −2k/m −2d/m





z1

z2

z3

z4


where z1 = x1, z2 = ẋ1, z3 = x2 and z4 = ẋ2. For simulation purposes, we choose M = 10,

m = 1, k = 1 and d = 5 with appropriate units. Since M > m, a perturbation (perturbed

so that it has some non-zero initial velocity) in M will result in larger oscillations in the masses,

compared to the case when m is perturbed by the same amount. Hence, we can conclude that M has

a large influence on m, whereas, m has much smaller influence on M . In the language of information

transfer between the states, this can be characterized by the information transfer from the position

variable of one mass to the velocity variable of the other mass. From the analytical expression of

information transfer, that is, equation (4.6), the information transfer from z1 → z4 and z3 → z2 are

Tz1→z4 = 0.174 and Tz3→z2 = 0.053. This confirms the fact that M has a much larger influence on

m, whereas m has negligible effect on M .

For calculating these transfers from data, the system was initialized at [1 .2 1 .3]> and data

was collected for 10 time steps with sampling time δt = 0.1 seconds. An additive Gaussian noise

of variance 0.1 was added to the system. With this, the information transfer values were calculated

as Tz1→z4 = 0.1502 and Tz3→z2 = 0.03. Though the exact values do not match, but they are close
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and more importantly, they do convey the fact that M has a much larger influence on m and m has

negligible influence on M .

9.3.1 Topology Identification of Linear Networks

For linear systems, zero information transfer can be characterized by the entries of the system

matrix and in particular, information transfer from a state zi to zj is zero if and only if Aji is zero.

Hence, a non-zero information transfer from zi to zj implies existence of a directed link from node

zi to zj in the underlying linear network. We use this result and use information transfer as a tool for

identification of topology of linear networks.

Example 41. In this example the objective is to identify network topology from time series data.

Consider a network dynamical system described by following difference equation



z1
t+1

z2
t+1

z3
t+1

z4
t+1

z5
t+1


= 0.9



0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0





z1
t

z2
t

z3
t

z4
t

z5
t


+ σξt (9.34)

The network topology corresponding to above system is shown in Fig. 9.12

We know that the information transfer from Tx1→y is zero if and only if Ayx1 = 0. Hence,

information transfer can be used to inference presence or absence of a link i.e., network topology.

In the above system zi dynamics affect the dynamics of zi+1 for i = 1, 2, 3, 4 and z1 is affected by

z3. Hence, Tzi→zi+1 should be non-zero for i = 1, 2, 3, 4 and Tz3→z1 should also be non-zero. All

the other transfers should be zero. The data was generated by choosing a single initial condition and

propagating it for ten time steps with value of noise variance σ = 2.1.

The information transfer between the states is shown in table 9.1 and Fig. 9.13 and we find that

there is non-zero information transfer from zi → zi+1 for i = 1, 2, 3, 4 and Tz4→z1 is also non-zero.

All the other transfers are very close to zero. For example, the transfer from z5 to all the other states

is of the order of 10−4 and hence we conclude that z5 is not affecting any other state. Hence, we find



www.manaraa.com

132

X4X2

X1

X3

X5

Figure 9.12 Network corresponding to the dynamical system given in (9.34).
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Figure 9.13 Information transfer between the states.
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Table 9.1 Information Transfer between the States

I.T. Value
Tz1→z2 0.45
Tz2→z3 0.34
Tz3→z4 0.34
Tz4→z5 0.31
Tz4→z1 0.35

Other transfers ∼ 10−4

that our information transfer measure recovers the correct causal structure or the network structure

of the dynamical system from time series data.

X1

X2

X3

X4

X5

Figure 9.14 Network identified by Granger causality

Further, to compare with an existing measure of causality, we used Granger causality test (8),(5)

on the same data set. Granger causality test is one of the most commonly used methods for causality

detection and the intuition behind the definition is the following. A variableX Granger causes another

variable Y if the prediction of Y based on its own past and past of X is better than the prediction

of Y based on its own past alone. For self containment of this work, we discuss the formulation of

Granger causality briefly. Suppose Xt, Yt and Zt are three jointly distributed stationary multivariate

stochastic processes. Consider the regression models

Xt = αt + (X
(p)
t−1 ⊕ Z

(r)
t−1) ·A+ εt (9.35)
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Xt = α′t + (X
(p)
t−1 ⊕ Y

(q)
t−1 ⊕ Z

(r)
t−1) ·A′ + ε′t (9.36)

whereA andA′ are the regression coefficients, α and α′ are constant terms, ε and ε′ are residuals, and

the predictee variableX is regressed first on the previous p lags of itself plus r lags of the conditioning

variable Z and second, in addition, on q lags of the predictor variable Y . Granger causality of Y to

X , given Z, is a measure of of the extent to which the inclusion of Y in the model (9.36) reduces the

prediction error of the first model (9.35) and is defined as

GY→X|Z = ln
var(εt)
var(ε′t)

(9.37)

where var(·) is the variance.

X1

X2

X3

X4

X5

Figure 9.15 Network obtained using Sparse DMD

As can be seen from Fig. 9.14, Granger causality identifies both direct and indirect causal influ-

ence and it fails to differentiate between direct and indirect influence. The direct links are shown in

green and the indirect links, which are also identified by Granger causality are indicated by dotted

orange lines. Hence, it is not possible to infer the correct causal structure from Granger causality

test. However, our measure of information transfer can differentiate between direct and indirect influ-

ence (96) and information transfer computed in this work gives only the direct influence. Hence the

proposed measure captures the true causal structure.
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At this stage one might wonder as to the need of computing information transfer for the purpose of

identifying network topology. If all we are interested in determining the presence of absence of links

between nodes, one can do that by simply estimating the system dynamics matrix Ā using optimization

formulation in Eq. (9.19) from time-series data. In that case, one may wonder is there a need to

estimate Ā 6x for the freeze system? In particular, if Āij = 0( 6= 0) then it implies absence (presence)

of directed link from node j to node i. To verify this claim in Fig. 9.15, we compare the results for

the network topology identification obtained using our information transfer based method and one

based on estimated system matrix Ā. We find that the information transfer measure can regenerate

the correct topology of the network, whereas, sparse DMD algorithm identifies some links which are

not there in the original network. The spurious links are marked by dotted orange lines in Fig. 9.15.

Example 42. Small world networks are ubiquitous in nature and in this example, we look at a small

world network with 20 nodes and analyze how information transfer measure performs to recover the

causal structure of the small world network. In the previous example, we constructed a network from

a given dynamical system. In this example, we start with a network and construct a dynamical system

from the network and identify the connections of the network using the information transfer measure.

In particular, given a network of n nodes, we construct a n-dimensional discrete time linear dynamical

system such that, if there is a directed edge from node i to node j, then Aji 6= 0. Thus we obtain the

system matrix of the dynamical system and we make the system stable by scaling the A matrix with an

appropriate constant.

In Fig. 9.16(a) we show the small world network of 20 nodes which is used to generate the data.

In this case, we corrupt the data with i.i.d. Gaussian noise of variance 0.1. Hence, λ = 0.3 in the

optimization problem (9.17). Fig. 9.16(b) shows the reconstructed network using information transfer

method. We find that in this case information transfer identifies three extra links, which are not there

in the original system. These links are marked in red in Fig. 9.16(b). In this case, information transfer

does not identify the exact causal structure and there is some error, but it performs pretty well.

In Fig. 9.17, we show the percentage error as the number of nodes in the system is increased. In

all these cases, we did not corrupt the data with noise. In these examples, we find that even as the

number of nodes is increased, the percentage error remains relatively small, and hence we conclude
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Figure 9.16 (a) Small world netowrk of 20 nodes. (b) Reconstructed network.
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Figure 9.17 Percentage error in number of links v/s number of nodes.
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that the information transfer measure does a pretty good job in identifying the causal structure in a

dynamical system. In these simulations, we considered small world networks of different number of

nodes and the number of links is nearly four times the number of nodes.

9.4 Computation of the Information Transfer for Nonlinear Systems

One of the main challenge in computing the information transfer from time series data for non-

linear system is to propagation of probability density function under nonlinear flow field and the

computation of conditional entropy term. Unlike linear system where linearity and Gaussian prop-

erty of the probability density function was exploited for the data-driven computation of information

transfer, the same does not applies for nonlinear system. We make use of Naturally Structured Dy-

namic Mode Decomposition algorithm (NSDMD) for the approximation of transfer P-F operator and

for propagation of probability density function. The positivity and the Markov property of the NS-

DMD algorithm is exploited for the propagation of probability density function and for computation

of conditional entropy term.

Again we will outline the computation procedure for the two subspace case the general case (more

than two subspace case) will follows from this procedure. The information transfer formula for the

two subspace case can be simplified as follows. We rewrite Eq. (3.3) as

Tx→y = H(ρ(y(t+ 1)|y(t)))−H(ρ 6x(y(t+ 1)|y(t)))

= H(ρ(y(t+ 1), y(t)))−H(ρ 6x(y(t+ 1), y(t)))

In writing the above equality we have used the fact thatH(X|Y ) = H(X,Y )−H(Y ). Furthermore,

since x is held frozen from time t to time t+ 1, we have

H(ρ(y(t))) = H(ρ6x(y(t)).

We next outline the procedure for computing the joint entropy termH(ρ(y(t+1), y(t))) using the

finite-dimensional approximation of the P-F matrix P obtained using NSDMD optimization formula-

tion outlined in (9.15). Note that in the construction of the P-F matrix P we use the original data set

(9.28). Once we outline the procedure for computing the joint entropy term for the non freeze case,

H(ρ(y(t+ 1), y(t))), the computation for the entropy term for the freeze case, H(ρ6x(y(t+ 1), y(t))),
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will follow along similar lines. The only difference being the the P-F matrix for the freeze case, de-

noted by P 6x, will be computed using the modified data set obtained to replicate the freeze case i.e.,

data-set (9.31).

For computing H(ρ(y(t+ 1), y(t))), we first consider finite approximation of ρ(z(t+ 1), z(t)) as

discrete probability measure. Towards this goal we consider finite partition of the state space Z as

Z = {D1, . . . , DK}, D = ∪Kk=1Dk.

such that Di ∩Dj = ∅. Similarly, let

Zx = {Dx
1 , . . . , D

x
K}, Zy = {Dy

1 , . . . , D
y
K}

where Zx and Zy are the projection of the partition, Z , along the x and y coordinates respectively.

Let Dx = ∪Kk=1D
x
k and Dy = ∪Kk=1D

y
k . We have ρ(z(t+ 1), z(t)) = ρ(z(t))ρ(z(t+ 1)|z(t)), Let

[pz]
t
ij := Prob(zt+1 ∈ Dj |zt ∈ Di)

[pz]
t
i := Prob(zt ∈ Di)

Hence, Prob(zt+1 ∈ Dj , zt ∈ Di) = [pz]
t
i[pz]

t
ij

Similarly, we can define [px]ti, [py]
t
i, [px]tij , and [py]

t
ij as follows:

[px]ti := Prob(xt ∈ Dx
i ), [py]

t
i := Prob(yt ∈ Dy

i )

To compute the above defined quantities, we make use of finite dimensional approximation of P-F

operator, P. Note that in the finite dimensional approximation of the P-F matrix using NSDMD

algorithm we have assumed that the dictionary functions are positive i.e., ψi(z) ≥ 0 for i = 1, . . .K.

Furthermore, we also assume that the dictionary functions are density functions i.e.,∫
Z
ψi(z)dz = 1, i = 1, . . . ,K.

Let wt = (w1
t , . . . , w

K
t ) ∈ RK be a probability row vector. Density function, ρ(z(t)) can be con-

structed using this probability vector and the dictionary functions Ψ(z) as ρ(z(t)) = wtΨ
>(z). This

density function can be propagated using finite dimensional P as follows.

ρ(z(t+ 1)) = wtP
>Ψ>(x) = wt+1Ψ

>(x).
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Hence we have

[pz]
t
i =

∫
Di

wtΨ
>(z)dz = wt

∫
Di

Ψ>(z)dz = wtΘ
>
i

where Θi =
∫
Di

Ψ(z)dz.

Let λi = {i1, i2, · · · , iL} ⊆ {1, 2, · · · ,K} such that Dy
ik
∩ Dy

i 6= φ, where φ is the empty set.

Then

[py]ti =

∫
Dλi

wtΨ
>(z)dz = wt

∫
Dλi

Ψ>(z)dz.

Now let w̄ be the probability vector such that

w̄

∫
Di

Ψ>(z)dz = 1.

i.e., density function of the form w̄Ψ>(z) correspond to the case where the entire distribution is

concentrated on set Di. With the above definition of w̄ we have

[pz]
t
ij =

∫
Dj

w̄P>Ψdz = w̄P>
∫
Dj

Ψ(z)dz = w̄P>Θ>j

Hence, we have

Prob(zt+1 ∈ Dj , zt ∈ Di)]

=

[
wt

∫
Di

Ψ>(z)dz

][
w̄P>

∫
Dj

Ψ(z)dz

]
= wtΘ

>
i w̄P>Θ>j = Γij (9.38)

As defined earlier, the set D = {ψ1, · · · , ψK} are the dictionary functions for observables on the

space Z. Note that ρ(z(t + 1), z(t)) is defined on the product space Z × Z and hence we consider

the set Φ = D × D = {ϕ11, ϕ12, · · · , ϕKK} as the set of dictionary functions on the product space,

where ϕij = ψiψj and let Di ×Dj := Di,j . Hence, we have

ρ(z(t+ 1), z(t)) =
K∑

i,j=1

Γijϕij(z, w). (9.39)

Let

λi,j = {(p, k)|Dy
i,j ∩D

y
p,k 6= φ; p, k = 1, 2, · · · ,K}
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Hence, by similar arguments for finding the marginal probability,

Prob(y(t+ 1) ∈ Dj , y(t) ∈ Di)

=

∫
Dλi,j

K∑
i,j=1

Γijϕij(z, w)dzdw (9.40)

Hence, (9.40) gives the probability distribution of (y(t+ 1), y(t)) and using the entropy formula for

a discrete probability distribution (H(P ) = −
∑

i Pi logPi), we get the entropy of (y(t + 1), y(t)).

Similarly, using the same above procedure for the modified data set (9.31), we can compute the entropy

of (y(t+ 1), y(t)), when x is held frozen and computing the difference H(y(t+ 1), y(t))−H6x(y(t+

1), y(t)), we get the information transfer from x to y.

Algorithm 2 Algorithm for finding the information transfer from time series data

1. Compute the Koopman operator from the time series data using the method of Naturally Structured
Dynamic Mode Decomposition.

2. Compute the joint probability of (z(t+ 1), z(t)) using (9.38).

3. Compute the marginal probability of (y(t+ 1), y(t)) from the joint density from (9.40).

4. Compute the entropy H(y(t+ 1), y(t)).

5. Form the modified data set from the given time series data from (9.31).

6. Repeat steps (1)-(5) for the modified data set to get the entropy H6x(y(t+ 1), y(t)).

7. Compute H(y(t+ 1), y(t))−H 6x(y(t+ 1), y(t)) to get the information transfer from x to y.

9.4.1 Examples and Simulations

Example 43. Two State Non-linear System.

Next we consider a non-linear example. Consider the system

xt+1 = 2xt(1− xt) + 2yt; yt+1 = .8yt

The system was evolved for 300 time steps, starting from
(

0.9 0.9

)>
.

From the system equations, we see that the y dynamics is not affected by x, whereas, x dynamics

is affected by y. So there should be non-zero flow of information from y to x and there should be zero

information flow from x to y.
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For this example too, we considered Gaussian radial basis functions, with σ = 0.01, for compu-

tation of the Koopman operators and with our algorithm we found Tx→y = −0.03 and Ty→x = 1.63.

So, in this case also our information transfer measure identifies that y affects x dynamics and x does

not influence y. Hence we have identified the correct causal structure.

Granger causality for this example identified a statistical dependence of x and y and inferred that

both x and y cause each other, whereas, in reality the y dynamics is never affected by x dynamics and

hence the influence of x on y should be zero. However, Granger causality fails to identify this, while

our information transfer measure does capture the zero influence.

Example 44. Henon Map. In the second example, we consider the Henon map. It is one of the most

studied dynamical systems which exhibit chaotic behaviour. The dynamical equations of the Henon

map are

xn+1 = 1− ax2
n + yn + γξx

yn+1 = bxn + γξy

The classical values of the parameters are a = 1.4 and b = 0.3. We add small process noise in

the system with γ = 0.01. The support of the the first two Koopman eigenfunctions, computed using

the NSDMD algorithm, is shown in Fig. 9.18.

(a) (b)

Figure 9.18 (a) Support of the eigenfunction corresponding to the largest eigenvalue of the Koop-
man operator. (b) Support of the eigenfunction corresponding to the second largest
eigenvalue of the Koopman operator.
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For computing the information transfers, data was collected for 1000 time steps and information

transfer between the states was calculated using the algorithm described in algorithm 2. We chose

200 Gaussian radial basis functions, with σ = 0.01 as the dictionary functions and this gave Tx→y =

0.0982 and Ty→x = −0.7246. It is to be noted that one of the transfers is negative. We suspect that

the negative value of the transfer is due to the fact that one Lyapunov exponent of the Henon map is

negative, while the other is positive. Another interesting observation is the fact that the information

transfer from x to y is nearly b2. This is observed to be true in linear systems which have the following

structure

xn+1 = axxn + axyyn + σξx

yn+1 = ayxxn + σξy

In particular, it was observed that with small σ ≈ 0.01, the information transfer from x to y is nearly

equal to a2
yx. Since the x dynamics affect the y dynamics linearly in the case of a Henon map, the

same result hold true here as well.
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CHAPTER 10. DATA DRIVEN CAUSAL INFERENCE IN STOCK MARKET

10.1 Introduction

Economists and common man alike are interested in stock market and stock prices of different

companies. Economists try to explain and predict the behaviour of stock prices, whereas people who

invest in the stock market are equally interested, as they have their property at stake. An organized

and managed stock market also encourage investment opportunities (98; 99). Moreover, stock market

plays an important role in the allocation of capital to corporate sector that in turn stimulate real eco-

nomic activity. As such, studies related to cause and effect in stock markets are of utmost practical

importance.

Identification of cause-effect relation has been a fundamental question in science since long.

Causality and influence characterization is important in many different branches of research like bi-

ology, neuroscience, economics, social network analysis etc. Usually, ideas from statistics and in-

formation theory are used for characterizing causality and influence. For example, in (1) the authors

use information based metric to characterize the most influential nodes in social networks. In neu-

roscience, concepts of information theory are used to understand how information flows in different

parts of the brain (2) and identifying influence in gene regulatory networks (3; 4). In economic and

financial networks, different causality tests can be used to infer causal interactions from the time se-

ries data. Among these Granger causality (6; 7; 8) is one of the most commonly used definitions of

causality and Granger causality and different variants of it have been used extensively for character-

izing influence in stock market (100; 101; 102).

In this chapter, we use the notion of information transfer in a dynamical system to analyze the

causal structure among the stock prices of 84 different companies in the US market. In particular, we

assume the stock market to be a discrete time linear system and use data driven approach to compute
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the information transfer between the different companies and based on the information transfer values

we characterize the causal structure and influence among the companies. Further, we use the infor-

mation transfer measure to define what we call influence distance and demonstrate how it can be used

for clustering of the companies. We also show how the information transfer measure can be used for

prediction of stock market crashes and we demonstrate this by predicting the Great Recession of 2008

and the stock market crash of November 2008.

10.2 Influence in Stock Market

In this section, we discuss how the information transfer measure can be used for analysis of stock

market prices. U.S. closing stock prices of 84 different companies over a period of 600 days was

collected for analysis. In particular, closing stock prices from 3rd January 2007 to 9th June 2009

was used for analysis. Data from this period was chosen so that it includes the data from the Great

Depression of 2007-08 and also data from financial collapse in November 2008.

10.2.1 Influence between 2 companies

Information transfer from a state x to any other state y quantifies how the x dynamics affect y

dynamics, as the system evolves in time. For example, if the absolute value of information transfer

from x to y is large, it means that x dynamics affect (influence) y a lot. This is because, large

information transfer means large transfer of entropy and so, as x evolves, it makes y fluctuate and

hence y changes. Hence, if |Tx→y| is large, change in value of x will result in change in y. On the

other hand, if Ty→x ≈ 0, then variation in y may not change x.

For example, we look at the information transfer between Internation Business Machines (IBM)

and Intel Inc. (Intel). The first 300 days data (closing stock price) was used for computing the

information transfer and the information transfers were computed as TIBM→INTC = 0.02 and

TINTC→IBM = .2. Hence, Intel influences the stock price of IBM, but IBM does not affect the

stock price of Intel. This can be seen from Fig. 10.1. For example, around the 80 day mark, there is

a significant change in the stock price of IBM, but the price of stocks of Intel remains fairly constant.

On the other hand, around 250 days mark, there is a change in the stock price of Intel and we find that
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Figure 10.1 Stock prices of IBM and Intel (INTC).

stock price of IBM also changes. In fact, this observation is true around the 380 days mark and 420

days mark. Note that, for computing the information transfer, we had used the first 300 days stock

price data. Hence, one can conclude that the computed information transfer can not only be used to

verify the past data, but also to predict changes in stock prices in the future.

A similar conclusion can be deduced for Coca-Cola (KO) and Pepsi(PEP). The stock price data for

the two companies is shown in Fig. 10.2. In this case also we took the first 300 days data as the training

data and the information transfers were computed as TKO→PEP = 0.23 and TPEP→KO = 0.03.

Hence, conclusions similar to the IBM and Intel analysis can be inferred. For example, around 440

days mark there is a sudden change in stock price of Coca-Cola and we see that there is a large drop

in stock price of Pepsi as well. Whereas, around 500 days mark there is a change in stock price of

Pepsi, but the stock price of Coca-Cola is not changing much.

As a third example, we look at stock prices of AT & T (T) and Verizon (VEZ). Using the first

300 days data as training data, the information transfer in both directions were found to be nearly 0.2.

Hence, a change of stock price in each should reflect in a change in stock price of the other and the

trend of the stock prices should be similar for both the companies. In fact, this is true, as can be seen

in Fig. 10.3, where we plot the stock prices of both the companies.
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Figure 10.2 Stock prices of Coca-cola (KO) and Pepsi (PEP).
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10.2.2 Clustering of companies

Clustering of companies is important not only for investors, but also for creditors, stock holders

etc. It is also an important tool for studying stock market volatility (103). As such a meaningful

clustering of various companies is important. In this subsection, we present spectral and hierarchical

clustering, based on the information transfer measure. Based on the information transfer Tx→y from

x to y, we define the information distance or influence distance as follows :

Definition 45 (Influence Distance). If the information transfer from x to y is Tx→y, then the informa-

tion distance or influence distance from x to y is

Dx→y = exp(−|Tx→y|) (10.1)

Note that the above measure is a metric which is non-symmetric and does not satisfy the triangle

inequality. However, this kind of distance functions, which are not symmetric and does not satisfy

triangle inequality is commonly used in information geometry (104). The rationale behind defining

the distance in a manner as in (10.1) is the fact that if x has a large influence on y, then y is close to x.

With the distance defined as in (10.1), we look at the spectral clustering of the different banks,

financial companies and computer companies (Fig. 10.4). We find that the major computer hardware

companies like Microsoft (MSFT), Apple (AAPL) and Intel (INTC) are in the same cluster. Similarly,

major financial companies like American Express (AXP), Capital One Financial (COF) and Schlum-

berger (SLB) belong to the same cluster. These basic findings indicate that the influence distance

does make physical sense, and in the future, we hope to build on these findings. Moreover, a kind of

crude verification of the clustering can be done by looking at the correlation between the stock prices

of the companies in different clusters. For example, J.P. Morgan Chase (JPM) and Morgan Stanley

(MS) belong to the same cluster and the correlation coefficient between the two, with the given data

is 0.8521, whereas the correlation coefficient between JPM and Schlumberger Ltd. (SLB) is 0.5842

and they belong to different clusters.

In Fig. 10.5 we look at the hierarchical clustering of the same companies. This also clubs similar

companies together. For example, Apple (AAPL) and Hewlett-Packard (HPQ) are in the same cluster,
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which is superseded by International Business Machines (IBM). This is shown in Fig. 10.5 by red and

green lines.

10.2.3 Stability of stock market

As mentioned earlier, in this work we have used stock price data of 600 days from January 2007

through June 2009. For stability analysis, the data was divided into 19 different windows, each con-

taining data for 30 days. For stability analysis, we concentrate on the stock prices of 10 banks and

financial companies and the information transfer between the companies was calculated for each of

the 19 windows.
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Figure 10.6 Information transfer from (a) American Express (AXP) and (b) Capital One Financial
(COF).

The information transfer from American Express (AXP) and Capital One Financial (COF) is

shown in Fig. 10.6(a) and (b) respectively. From Fig. 10.6(a) and (b), we find that there are two

distinct peaks, one around September 2007 and another around September 2008. We know that in

2008 there was a severe recession, which is known as Great Recession of 2008 (105; 106). It is gen-

erally accepted that the recession started around late November and early December of 2007 (107).

The large peak in information transfer obtained around September of 2007 predicts that instability is

creeping into the system and one has enough time to take precautionary measures. Similarly, there

was another crash around November 2008 (108). We find that information transfer can predict this
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crash as well and that too in advance. However, this crash was not as severe as the Great Recession

and this is reflected in the fact that the peak information transfer around September 2008 is smaller

than the peak around September 2007. Hence, from the simulations, it is evident that information

transfer can predict crashes in the stock market and hence can be used to analyze and predict stock

prices and take corrective actions so that one does not suffer losses.
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CHAPTER 11. CONCLUSION AND FUTURE WORK

11.1 Conclusions

In this work, we studied the information flow between the states of a discrete-time dynamical sys-

tem. The motivation for the work was to provide a definition of causality and influence in a dynamical

system setting, so that the proposed measure can capture the intuitions of causality, like zero transfer

and transfer asymmetry. To this end, we define what we call one-step information transfer and have

shown that this definition does capture the intuitions of causality in a dynamical system. The one-step

information transfer was generalized to define n-step information transfer and this allows complete

distinction between direct and indirect transfer. Further, the definition of information transfer was

generalized to define information transfer between the various signals in a control dynamical system.

The definition of information transfer from state to output has physical meaning and we demonstrate

this on power networks, where we use the information transfer measure to identify the generators and

states which are responsible for instability. The same conclusions can also be reached from state to

state transfer, where we connected information transfer with instability and this further allowed us to

predict phase transitions in complex dynamical systems. We also provide two algorithms to compute

the information transfer measure from time series data and use it for topology identification of linear

networks and also characterized influence and also showed how the developed framework could be

used to predict crashes in the stock market.

11.2 Future Work

The concepts presented here are only the starting point and can be extended in many different

directions, both theoretically and from an application point of view. One of the main direction is
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the connection between information transfer and thermodynamic concepts like entropy, free energy

and temperature. In particular, can the laws of thermodynamics be stated/understood in terms of

information transfer? Moreover, phase transition is a very important and relevant problem both in

classical physics and quantum physics and a standard model for phase transitions is the double-well

potential. The results on information transfer and phase transition show enough potential which can be

explored in future. This connection not only has theoretical importance, but also practical implications

in different fields like solid mechanics, chemistry, solid state physics etc. From the control theory

perspective, information transfer can be used to design control and also design filters. In particular,

one can show that in a Kalman filter the information transfer from the system to the estimator is

a minimum. This shows a plausible direction in the future. Information transfer can be used to

characterize influence and from an application point of view, this can be used in different real life

problems like analysis of social networks, gene regulatory networks etc.
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[86] P. Erdös and A. Rényi, “On random graphs, i,” Publicationes Mathematicae (Debrecen), vol. 6,

pp. 290–297, 1959.

[87] S. Wasserman and K. Faust, Social network analysis: Methods and applications. Cambridge

university press, 1994, vol. 8.

[88] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of complex networks,”

nature, vol. 406, no. 6794, p. 378, 2000.

[89] B. Huang and U. Vaidya, “Data-driven approximation of transfer operators: Naturally struc-

tured dynamic mode decomposition,” in https://arxiv.org/abs/1709.06203, 2016.

[90] C. Caramanis, S. Mannor, and H. Xu, “Robust optimization in machine learning,” Optimization

for machine learning, p. 369, 2012.

[91] M. Jovanovic, P. Schmid, and J. Nichols, “Low-rank and sparse dynamic mode decomposition,”

Center for Turbulence Research Annual Research Briefs, vol. 2012, pp. 139–152, 2012.

[92] N. Crnjaric-Zic, S. Macesic, and I. Mezic, “Koopman operator spectrum for random dynamical

system,” arXiv preprint arXiv:1711.03146, 2017.

[93] O. Junge, J. E. Marsden, and I. Mezic, “Uncertainty in the dynamics of conservative maps,”

in Decision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 2. IEEE, 2004, pp.

2225–2230.

[94] N. Takeishi, Y. Kawahara, and T. Yairi, “Subspace dynamic mode decomposition for

stochastic koopman analysis,” Phys. Rev. E, vol. 96, p. 033310, Sep 2017. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevE.96.033310

[95] S. Kutluay, A. Bahadir, and A. Ozde, “Numerical solution of one-dimensional burgers equation:

explicit and exact-explicit finite difference methods,” Journal of Computational and Applied

Mathematics, vol. 103, no. 2, pp. 251 – 261, 1999.

https://link.aps.org/doi/10.1103/PhysRevE.96.033310


www.manaraa.com

162

[96] S. Sinha and U. Vaidya, “Causality preserving information transfer measure for control dynam-

ical system,” IEEE COnference on Decision and Control, pp. 7329–7334, 2016.

[97] ——, “On information transfer in discrete dynamical systems,” Indian Control Conference, pp.

303–308, 2017.

[98] F. S. Mishkin, The economics of money, banking, and financial markets. Pearson education,

2007.

[99] G. M. Caporale, P. G. Howells, A. M. Soliman et al., “Stock market development and economic

growth: the causal linkage,” Journal of economic development, vol. 29, no. 1, pp. 33–50, 2004.

[100] C. W. Granger, “Some recent development in a concept of causality,” Journal of econometrics,

vol. 39, no. 1-2, pp. 199–211, 1988.

[101] T. Vỳrost, Š. Lyócsa, and E. Baumöhl, “Granger causality stock market networks: Temporal

proximity and preferential attachment,” Physica A: Statistical Mechanics and its Applications,

vol. 427, pp. 262–276, 2015.

[102] C. Hiemstra and J. D. Jones, “Testing for linear and nonlinear granger causality in the stock

price-volume relation,” The Journal of Finance, vol. 49, no. 5, pp. 1639–1664, 1994.

[103] T. Lux and M. Marchesi, “Volatility clustering in financial markets: a microsimulation of in-

teracting agents,” International journal of theoretical and applied finance, vol. 3, no. 04, pp.

675–702, 2000.

[104] S. Amari and H. Nagaoka, Methods of information geometry. American Mathematical Soc.,

2007, vol. 191.

[105] D. B. Grusky, B. Western, and C. Wimer, The great recession. Russell Sage Foundation, 2011.

[106] R. E. Farmer, “The stock market crash of 2008 caused the great recession: Theory and evi-

dence,” Journal of Economic Dynamics and Control, vol. 36, no. 5, pp. 693–707, 2012.

[107] L. J. Christiano, M. S. Eichenbaum, and M. Trabandt, “Understanding the great recession,”

American Economic Journal: Macroeconomics, vol. 7, no. 1, pp. 110–67, 2015.



www.manaraa.com

163

[108] A. Twin, “Dow sheds 486 points : Post-election worries about the weak economy are front and

center.” http://money.cnn.com/2008/11/05/markets/markets newyork/, November 2008.

http://money.cnn.com/2008/11/05/markets/markets_newyork/

	2018
	Information transfer in dynamical systems
	Subhrajit Sinha
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. Introduction
	1.1 Previous Work
	1.2 Our Contribution
	1.3 Organization of the Report

	2. Preliminaries for Information Transfer Formulation
	2.1 Perron-Frobenius Operator
	2.2 Directed Information, Transfer Entropy and Liang-Kleeman Information Transfer
	2.2.1 Directed Information
	2.2.2 Transfer Entropy
	2.2.3 Liang-Kleeman Information Transfer


	3. Information Transfer
	3.1 One Step Information Transfer
	3.1.1 Information Transfer and Causal Inference in Nonlinear Systems

	3.2 n-step Information Transfer
	3.3 Information Transfer and Dynamics of Linear Systems
	3.4 Set Oriented Method for Computation of Information Transfer

	4. Information Transfer in Linear Control System
	4.1 Information Transfer Between the States
	4.1.1 Examples

	4.2 Information Transfer in Linear Control Systems
	4.2.1 Information from Input to State
	4.2.2 Information from State to Output
	4.2.3 Information from Input to Output

	4.3 Information Transfer and Structural Controllability and Observability
	4.4 Information Transfer in Feedback Control Systems

	5. Information Transfer as a Measure of Causality
	5.1 Directed Information as a Measure of Causality
	5.1.1 Examples

	5.2 Information Transfer Captures the True Causal Structure

	6. Examples and Applications
	6.1 Application to social network
	6.1.1 Simulation

	6.2 Information Transfer and Optimal Placement of Actuators

	7. Influence Characterization in Power Systems
	7.1 Introduction
	7.2 Stability Issues in Power Systems
	7.3 Modelling of a Power Network
	7.3.1 Generator Model
	7.3.2 Load Model

	7.4 Influence Characterization in IEEE 9 Bus System
	7.4.1 Contribution to most unstable mode
	7.4.2 Information transfer to the complex modes
	7.4.3 Information flow from generators to load

	7.5 Stability Characterization from State to State Information Transfer
	7.5.1 3 Bus system
	7.5.2 Information Transfer and Participation Factor
	7.5.3 Stability and state to state information transfer

	7.6 IEEE 39 Bus System

	8. Information Transfer and Phase Transition in Dynamical Systems
	8.1 Information Transfer and Phase Transition
	8.2 Coupled Oscillators in Double Well Potential
	8.3 Duffing Oscillator
	8.4 Lorenz Attractor
	8.5 Complex Networks

	9. Causal Inference From Time Series Data
	9.1 Transfer operators for stochastic system
	9.2 Robust approximation of P-F and Koopman operators
	9.2.1 Robust Optimization, Regularization, and Sparsity
	9.2.2 Design of robust predictor
	9.2.3 Examples

	9.3 Causal Inference in Linear Dynamical System
	9.3.1 Topology Identification of Linear Networks

	9.4 Computation of the Information Transfer for Nonlinear Systems
	9.4.1 Examples and Simulations


	10. Data Driven Causal Inference in Stock Market
	10.1 Introduction
	10.2 Influence in Stock Market
	10.2.1 Influence between 2 companies
	10.2.2 Clustering of companies
	10.2.3 Stability of stock market


	11. Conclusion and Future Work
	11.1 Conclusions
	11.2 Future Work

	BIBLIOGRAPHY

